
OVarFlow
Release 2.0

Jochen Bathke

Dec 25, 2021

OVARFLOW USAGE

1 Target audience 3

2 Premises to use OVarFlow 5

3 Motivation behind OVarFlow 7
3.1 Capabilities of OVarFlow . 8
3.2 Quick reference for OVarFlow . 9
3.3 A Primer into the technologies . 11
3.4 Setup & preparations . 13
3.5 Conda & Snakemake usage . 15
3.6 Configuration & adaptation . 21
3.7 Advanced usage topics . 25
3.8 Docker & Singularity usage . 31
3.9 The BQSR workflow . 35
3.10 Example & Tutorial . 39
3.11 Resource requirements . 43
3.12 Benchmarking & Optimizations . 44
3.13 Hardware recommendations . 68
3.14 The basic variant calling workflow . 69
3.15 The extended BQSR workflow . 75
3.16 OVarFlow 2 . 77
3.17 GATK Pitfalls . 83
3.18 Citation . 85
3.19 License . 85
3.20 Contact . 86
3.21 Repository . 86
3.22 Change Log . 86

i

ii

OVarFlow, Release 2.0

OVarFlow is an open source workflow for variant discovery of SNVs (single nucleotide variants) and indels (inser-
tions and deletions). With today’s high-throughput sequencing technologies and continuously declining sequencing
costs, variant discovery in whole-genome resequencing data is not only more affordable but also more demanded than
ever. Hence the need for easy and reliable variant calling emerges in a broader audience. Consequently OVarFlow was
created with the three major goals of:

• automation,

• documentation and

• reproducibility.

To achieve those goals OVarFlow is build upon several technologies that are proven and widely used in bioinformatics,
being Snakemake as a workflow management system, Conda as an environment manager and software repository and
GATK as a variant discovery toolkit.

OVARFLOW USAGE 1

OVarFlow, Release 2.0

2 OVARFLOW USAGE

CHAPTER

ONE

TARGET AUDIENCE

Variant calling is no novel task. Especially GATK not only provides the tools for variant discovery but also its well
known Best Practices Workflows. A downside of those guidelines is their focus on human sequencing data, being the
probably best studied model organism. With less well studied organisms workflows often have to diverge significantly.
OVarFlow steps into this gap and provides variant discovery also for non-model organisms in the fields of:

• biological basic research,

• animal breeding and

• plant breeding.

For the latter, only haploid organisms have been tested. Tetraploid organisms might require adaptation of the workflow
(especially GATK HaplotypeCaller).

3

https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows

OVarFlow, Release 2.0

4 Chapter 1. Target audience

CHAPTER

TWO

PREMISES TO USE OVARFLOW

To be able to use OVarFlow some requirements must be fulfilled in the first place. Obviously whole-genome resequenc-
ing data of the respective organism must be given. Like GATK Best Practices Workflows OVarFlow is designed to be
used with Illumina short read sequencing data. Furthermore a reference genome sequence must be given and also
a reference annotation, in case that functional annotation is desired.

To be able to analyze those data, some more technical requirements must also be considered. First of all access to a
Linux based computing infrastructure of sufficient size must be given. What is sufficient of course depends upon
the size of your data set. Some hints are given within the “Resource requirements” and “Hardware recommendations”
sections.

Finally on the side of human resources prior knowledge of the Unix/Linux command line with some proficiency is
required. Apart from this no prior knowledge (albeit helpful) is expected in any of the used technologies (Snakemake,
Conda or GATK). This documentation tries to be as comprehensive as possible, introducing the technologies as needed
and linking to further resources to get you started. For users with prior experience in the mentioned technologies the
“Quick reference for OVarFlow” might already be everything you need to get started. Those users might be able to
setup variant calling in 30 minutes. The rest is handled by OVarFlow.

5

OVarFlow, Release 2.0

6 Chapter 2. Premises to use OVarFlow

CHAPTER

THREE

MOTIVATION BEHIND OVARFLOW

Some of the motivation behind the creation of OVarFlow should already be obvious from the previous paragraphs. But
still some might wonder why all the hassle when GATK Best Practices are not only a detailed description, but are also
commonly referred to in method sections of various papers (e.g. PMID 29395925, PMID 24824529, PMID 30952207).
In the end many method sections mentioning GATK are rather superficial (e.g. PMID: 31246983, PMID: 31900978),
sometimes not even mentioning the names of GATK subtools used in the analysis. This was also noted by the initiators
of GATK, therefore writing:

6. What is not GATK Best Practices?

Lots of workflows that people call GATK Best Practices diverge significantly from our recommendations.
[. . .] However, any workflow that has been significantly adapted or customized, whether for performance
reasons or to fit a use case that we do not explicitly cover, should not be called “GATK Best Practices”,
which is a term that carries specific meaning.

Source: About the GATK Best Practices (date of accession: May 7th 2020).

Another problem is, that GATK Best Practices evolve over time, ultimately rendering global references to them (like
http://www.broadinstitute.org/gatk/guide/best-practices) useless. Thereby reproducibility of the exact data evaluation
workflow is lost. Irreproducible research even lead to the coining of the phrase replication crisis which is an ongoing
problem in science. A problem that even major science publishers like nature (Special: Challenges in irreproducible
research - 2018) are more and more aware off.

Therefore the main motivation behind OVarFlow is to achieve exact documentation and reproducibility of data
evaluation. It is the kind of openness that science should offer!

OVarFlow achieves this goal by four key points:

• the OVarFlow Snakefile and workflow itself,

• the documentation of Conda environments in a yml file,

• documentation of the analyzed dataset in a CSV file and

• documentation of non-default workflow settings in a yml file.

This results in a maximum of documentation and reproducibility of the data analysis and in addition eases writing of
any methods section, by providing those four files. Also users of OVarFlow are encouraged not only to use OVarFlow
but also to adopt it to their specific needs and then to republish their modified workflow.

With that being said, good luck with your variant discovery project and the hope that the following documentation will
turn out to be useful in your work!

7

https://www.ncbi.nlm.nih.gov/pubmed/?term=29395925
https://www.ncbi.nlm.nih.gov/pubmed/24824529
https://www.ncbi.nlm.nih.gov/pubmed/30952207
https://www.ncbi.nlm.nih.gov/pubmed/31246983
https://www.ncbi.nlm.nih.gov/pubmed/31900978
https://gatk.broadinstitute.org/hc/en-us/articles/360035894711-About-the-GATK-Best-Practices
http://www.broadinstitute.org/gatk/guide/best-practices
https://en.wikipedia.org/wiki/Replication_crisis
https://www.nature.com/collections/prbfkwmwvz
https://www.nature.com/collections/prbfkwmwvz

OVarFlow, Release 2.0

3.1 Capabilities of OVarFlow

The complexity of variant calling with all its distinct data evaluation steps can be a daunting task. OVarFlow tries to
wrap as much of this complexity as possible, thereby automating this intricate process to a maximum degree. Especially
the usage of GATK with its hundreds of single tools is challenging to novice users. But not only the amount of tools is
challenging also their individual usage with some very subtle obstacles, e.g.:

• High peak loads caused by the Java garbage collection in dependence on the number of available cores of the
CPU.

• Considerable extended computation times depending on the given instruction set of the CPU.

All those complexities have been taken into consideration and were incorporated into OVarFlow. But not only the
intrinsic complexity of variant calling and GATK is encapsulated by OVarFlow. Furthermore OVarFlow was extended
to include features that GATK does not possess directly.

3.1.1 Some highlights of OVarFlow

Massive parallelization Not only a high degree of parallelization, but also the ability to fine-tune the desired degree
of parallelization. Parallelization of GATK HaplotypeCaller version 3 was abandoned with the newer GATK
4 version, only leaving Apache Spark as an option. With OVarFlow GATK 4 HaplotypeCaller can operated in
parallel on various genomic intervals thereby accelerating the most time consuming step of variant discovery.

Inclusion of already available variant calls Previously generated variant calls (vcf files) can easily be incorporated
into new data evaluations. This allows for easy incorporation of new individuals into running studies, without
the need to recalculate all samples.

Exclusion of small genomic contigs Many genomes contain small contigs of e.g. 1000 bp or even less. Often those
tiny contigs are of no further interest. OVarFlow lets the user decide whether to include those tiny contigs into
the analysis or not. Furthermore the threshold of contig sizes to exclude can be chosen by the user.

Functional variant annotation Also functional annotation of the detected variant is automatized by incorporating the
annotation program SnpEff into the workflow.

Easy application installation Variant calling depends upon a fast software set. By the use of Conda environments,
installation of all needed applications is basically scaled down to a single command. Alternatively a single,
pre-built Docker container already bundles all the required software packages.

3.1.2 The two phases of OVarFlow

OVarFlow is a variant calling workflow, that posesses two separate phases.

The basic variant calling workflow First workflow is mandatory. It is designed to be as basic as possible and a the
briefest way to deliver annotated variants. Therefore minimum prior knowledge is required. Only a reference
genome and annotation is required.

The extended BQSR workflow The second workflow is optional and builds upon the basic variant calling workflow.
It uses previously called variants to perform base quality score recalibration (BQSR) and further improve the
variant calling results.

8 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.1.3 The primary goal of OVarFlow

Finally the main goal of OVarFlow is documentation and reproducibility of variant calling, which is achieved by three
components:

• OVarFlow as a workflow itself.

• Easy documentation of the used program versions via Conda environments and yml files.

• A CSV file to document the respective variant calling and all the input data used in it.

3.2 Quick reference for OVarFlow

The extensive documentation of OVarFlow might seem daunting, illustrating the complexity of variant calling. Besides
the inherent complexity of the task, the documentation tries to be as comprehensive as possible to assist novice users. On
the other hand advanced users that already have a working Conda environment can set up the variant calling workflow
in probably less than half an hour. A task that might take days to weeks is then automated by OVarFlow. This quick
reference is for those advanced users that want to quickly setup a new project.

1. Create a project directory (project_dir):

1 mkdir -p /path/to/project_dir/

2. Create a Conda environment (conda_env) for your project (or use one that already available for variant calling)
and activate this environment:

1 conda create --prefix /path/to/project_dir/conda_env
2 conda env update --prefix /path/to/project_dir/conda_env \
3 --file OVarFlow_dependencies_mini.yml
4 conda activate /path/to/project_dir/conda_env

3. You need to create a directory structure and put some files from OVarFlow’s GitLab repository into place:

/path/to/project_dir/
/path/to/project_dir/conda_env/
/path/to/project_dir/variant_calling/
/path/to/project_dir/variant_calling/FASTQ_INPUT_DIR/
/path/to/project_dir/variant_calling/REFERENCE_INPUT_DIR/
/path/to/project_dir/variant_calling/OLD_GVCF_FILES/
/path/to/project_dir/variant_calling/Snakefile
/path/to/project_dir/variant_calling/scripts/average_coverage.awk
/path/to/project_dir/variant_calling/scripts/createIntervalLists.py
/path/to/project_dir/variant_calling/samples_and_read_groups.csv
/path/to/project_dir/variant_calling/config.yaml # optionally

Some of the files can be created through the OVarFlow Snakefile, to avoid typos:

1 cd /path/to/project_dir/variant_calling/
2 snakemake -np

4. Place your reference and sequencing files into the appropriate directories.

5. The configuration file samples_and_read_groups.csv has to be adopted for your specific project. Modify
that file accordingly. It will also serve as a reference for your settings.

3.2. Quick reference for OVarFlow 9

OVarFlow, Release 2.0

6. An additional optional configuration file config.yaml allows for fine-tuning of Java resource usage and defining
the degree of parallelization of the data evaluation.

7. It is optional but advisable to test whether the annotation can be processed by snpEff at first, preventing late
stage failure.

1 snakemake -p --cores <number_of_desired_threads> create_snpEff_db

8. You can start the variant calling now:

1 cd /path/to/project_dir/variant_calling/
2 snakemake -p --cores <number_of_desired_threads>

That’s already everything to start your variant calling. Depending of the size of your data set and available computing
resources, OVarFlow will take care of the rest of the process that might take even weeks, while you can continue working
on other projects.

Finally you might want to document the exact software versions, that were used in the data evaluation. Just extract that
information from your Conda environment:

1 conda activate /path/to/project_dir/conda_env
2 conda env export > conda_environment.yml

3.2.1 Adding the BQSR workflow

The above workflow will already result in a set of annotated variants that can be sufficient for further analysis. To
further refine the called variants, the GATK team recommends to perform base quality score recalibration (BQSR).
Therefore BQSR was implemented in a second workflow, that can optionally be run in succession of the first workflow,
to further improve the called variants through BQSR.

1. The BQSR workflow has to be run within the same directory where the previous workflow was executed. So cd
into the project directory first:

1 cd /path/to/project_dir/

2. Two files have to be copied from the GitLab repository:

/path/to/project_dir/variant_calling/SnakefileBQSR
/path/to/project_dir/variant_calling/configBQSR.yaml (optionally)

3. The conda environment that was previously used has to be activated again:

1 conda activate /path/to/project_dir/conda_env

4. The input data is automatically detected from the file structure generated in the previous workflow. This includes
the following directories and files, that still have to be present:

03_mark_duplicates/<file_names>.bam
11_filtered_removed_VCF/variants_filtered.vcf.gz
processed_reference/<file_name>.fa.gz
snpEffDB/<directory_name>/<genes.gff, sequences.fa.gz, snpEffectPredictor.bin>

A configuration file like previously samples_and_read_groups.csv is therefore neither needed nor used.

10 Chapter 3. Motivation behind OVarFlow

https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

OVarFlow, Release 2.0

5. Fine-tuning of the workflows performance is enabled through the configuration file configBQSR.yaml. This
file is mainly about Java heap size and garbage collection threads, that can be optimized for a given computing
environment.

6. The BQSR workflow can now be started like this:

1 cd /path/to/project_dir/variant_calling/
2 snakemake -p --cores <number_of_desired_threads> -s SnakefileBQSR

3.2.2 Warning

Not every version of Snakemake works with OVarFlow. The workflow makes use of so called check-
points. Due to a bug that was introduced in Snakemake versions higher than 5.26.1 checkpoints don’t work
anymore. This bug was fixed in Snakemake 5.31.0. Therefore explicit software version were defined in
OVarFlow_dependencies_mini.yml. In cases were it is desired, the most current software version can be obtained
using the file OVarFlow_dependencies_mini_unversioned.yml.

3.3 A Primer into the technologies

For novice users, with only a basic understanding of bioinformatics, this section is supposed to serve as a very brief
introduction into the technologies that are used in OVarFlow. In this sense the following paragraphs are more of a
technical reference. As OVarFlow makes heavy use of the technologies outlined below, this will help novice users with
the terminology used in further sections.

3.3.1 Python 3

OVarFlow makes is build using the Python 3 programming language. Python is a scripting language, meaning that
the source code of the respective program is interpreted by a special run-time environment which doesn’t need to
be compiled first. To be able to execute a Python program the Python interpreter (usually CPython - the reference
implementation of the interpreter) as well as its accompanying modules have to be installed.

3.3.2 Snakemake

Snakemake is a workflow management system (WFMS). WFMS allow for the creation of defined sequences of tasks a
computer can execute. Practically this means the automatization of the successive or even parallel execution of various
programs. Thereby the main usage of Snakemake is the creation of automatic, reproducible data analysis workflows.

Snakemake itself is written in the Python programming language and the Python syntax, with some specific extensions,
is used to write workflows in Snakemake. Therefore a basic understanding of Python is required to create a workflow
using Snakemake. The file containing the workflow is called a Snakefile.

3.3. A Primer into the technologies 11

https://www.python.org
https://snakemake.readthedocs.io/en/stable/index.html

OVarFlow, Release 2.0

3.3.3 Conda & Bioconda

Many bioinformatics tasks revolve about the well orchestrated execution of a plethora of command-line tools. WFMS
like Snakemake can automate such processes. On the other hand the individual software has to be obtained and installed
on the executing system. Package management system simplify this task tremendously, often removing the need to
compile software packages from source code.

Conda is an open source package management system, that find broad application in data sciences. Beyond that it is
also an environment management system, that allows for the independent installation of several versions of a software,
without causing dependency conflicts. Even though some bioinformatics tools can be found via Conda it is not special-
ized in bioinformatics use cases. This cap is bridged by Bioconda, which is a so called channel for Conda, targeted a
bioinformatics tools. Basically the amount of available tools is increased by adding the Bioconda channel to the Conda
package manager.

3.3.4 GATK & GATK Best Practices

GATK is the commonly used abbreviation for the Genome Analysis Toolkit. This collection of command-line tools
is focused on the identification of genomics variants in high throughput sequencing data. It bundles more than 200
individual command-line tools. GATK is actively developed at the Broad Institute with the current major version being
GATK 4 (in 2020). As opposed to previous versions GATK 4 is open-source and freely available under a BSD 3-clause
license.

Some common use cases of GATK are described within the so-called “GATK Best Practices”. Those descriptions try
to give an overview of tasks and workflows that are widespread in variant calling. As the tools are further developed,
the “GATK Best Practices” are also subject to modifications.

3.3.5 Docker & Singularity

Like OVarFlow many modern software products are composed of many individual pieces, whose well orchestrated
interaction is mandatory for the final product to work. Deployment of such complex software applications can be
complex. OS-level virtualization, also referred to as container virtualization, tries to simplify software deployment by
bundling all individual components of an application in a single container. Container virtualization finds wide usage
among software developers and server administrators but is less focused on end users. Most container virtualization
techniques have been designed around Linux and are supposed to be used with this operating system (still ports to
Windows and macOS do exist).

Docker is probably the most well known container technology. Despite its wide use, it has some considerable draw-
backs, when used in multiuser computer environments. Most problematic is the fact, that Docker containers need to
be executed with system administrator privileges. This renders Docker unusable in many multiuser computer environ-
ments. This drawback of Docker is circumvented by Singularity. Singularity, just like Docker, packages individual
software components into a single container. Furthermore it can make use of Docker containers, but does not require
system administrator privileges. Therefore Singularity finds broad use in academic high performance computing, where
multiple users need to access a single system.

12 Chapter 3. Motivation behind OVarFlow

https://docs.conda.io
https://bioconda.github.io
https://gatk.broadinstitute.org
https://www.broadinstitute.org
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
https://www.docker.com
https://sylabs.io/singularity/

OVarFlow, Release 2.0

3.4 Setup & preparations

OVarFlow has been designed to be used in two alternative ways:

• directly, executing a so-called Snakefile containing the workflow or

• using a pre-built Docker-Container containing the Snakefile as well as all executables and their dependencies.

Both solutions have their own strengths and weaknesses. Direct usage of the Snakefile will give you more control
over the workflow. This includes the opportunity to easily update the individual programs used in the workflow. But
changes are not limited to the programs used, you might also incorporate your own personal changes to the Snakefile,
thereby altering the data evaluation procedure. Of course those options require at least a basic understanding of the
Python 3 programming language and the Snakemake syntax. Docker on the other side will hide some of the complexity
of OVarFlow, including installation of additional programs, but it will also limit the end user to the program versions
bundled within the docker container. Ultimately the Docker container only encapsulates the Snakefile and applications,
which are utilized in OVarFlow. To sum things up:

• Snakemake & Conda will allow for more control and easy updating of applications.

• Docker on the other hand needs fewer configuration but gives the user less control.

Still both options are designed to be used under a Linux based operating system and have not been tested on other
platforms. Anyway variant calling is a computationally demanding task which consumer hardware is badly suited for.
Therefore high performance computing (HPC), which is vastly dominated by Linux, is required.

The following paragraphs are directed to novice users, with no prior experience in the usage of Conda & Snakemake
or Docker. The descriptions are intended to create a basic setup and refer to broader documentation of the respective
software.

3.4.1 Setting up a Conda environment

Conda is a package and environment manager. It allows for the installation of various software comparable to an
appstore. Also different versions of a single software can be installed that are totally independent of one another.

Different distributions of Conda are available, namely Anaconda and Miniconda. The basic functionality of both
distributions is identical, but Anaconda is meant to provide a full grown application suit for data science using Python
and R. In doing so Anaconda will install a plethora of software that is commonly used in the field. Most of this software
is not needed for the usage of OVarFlow. Hence the installation of Miniconda is recommended. This minimum installer
for Conda still allows for the manual installation of every software that comes bundled with Anaconda in case it should
be needed at a later time.

• Download the Python 3 installer for Linux in the 64-bit version. 32-bit computers would be overwhelmed with
variant calling anyway.

• Verification is optional but highly recommended (sha256sum Miniconda3-latest-Linux-x86_64.sh).

• A detailed description of the installation is available, but essentially comes down to a single command-line:

1 bash Miniconda3-latest-Linux-x86_64.sh

The installer will prompt some questions. Novice users can accept the defaults.

• After closing and reopening the shell, the Conda command should now be available. This can easily be tested
by running the command conda help.

Now that Conda is installed, additional software resources - channels in Conda terminology - have to be made available.

• List the currently available channels via conda info.

• Conda-forge and Bioconda need to be added:

3.4. Setup & preparations 13

https://docs.conda.io/projects/conda/en/latest/index.html
https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html#linux-installers
https://conda.io/projects/conda/en/latest/user-guide/install/download.html#hash-verification
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html
https://conda-forge.org/
https://bioconda.github.io/

OVarFlow, Release 2.0

1 conda config --add channels defaults
2 conda config --add channels bioconda
3 conda config --add channels conda-forge

• That the available channels have indeed been altered can be verified again by conda info.

Your Conda installation is now ready to be used with OVarFlow. It will enable you to obtain all of the software that is
used by OVarFlow. Installation of software dependencies and further usage with OVarFlow is covered in the Conda &
Snakemake usage section.

3.4.2 Setting up Docker or Singularity

Alternatively to the above Conda usage container virtualization can be employed. This technology has the advantage
of bundling an application and its dependencies. In this case no Conda installation is required, as all indispensable
software components are included in the container. On the other hand the software for container virtualization itself
has to be present on the system. Also a certain understanding of container technologies is mandatory to be used
efficiently. Docker and Singularity are two widely used, compatible container technologies.

Docker

Docker provides a comprehensive documentation but the docker Docker curriculum might be better suited for novice
users. Dockers biggest drawback is probably its need for root access to the respective computer. If that’s a hindrance
Singularity might be an alternative.

The company behind Docker provides .deb and .rpm packages for various Linux distributions. As Docker is written
in the Go programming languages, statically link binaries are available as well.

The Docker installation can easily be tested:

1 sudo docker run hello-world

By adding your user to the group docker the need to include sudo with every docker command is circumvented.

However usage of Docker is far from self explanatory and a basic understanding of OS-level virtualization with the
concept of images and containers should be given. Briefly, images are the blueprint of a container. The image itself is
immutable and contains all the code of an application. A container is a running instance of the image. The application
is then executed from the container. When used without caution a new container is created every time Docker is started.
(For programmers: its a bit like the concept of class and object.)

An overview of the basic docker commands is available:

1 docker --help

The most basic docker usage shall be shown with the example image godlovedc/lolcow. This image can be obtained
via:

1 docker pull godlovedc/lolcow

This image should now be listed in the locally available images:

1 docker images

You can create and run a new container from the image:

14 Chapter 3. Motivation behind OVarFlow

https://www.docker.com
https:sylabs.io/singularity
https://docs.docker.com/
https://docker-curriculum.com
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/binaries/
https://docs.docker.com/engine/install/linux-postinstall/

OVarFlow, Release 2.0

1 docker run godlovedc/lolcow

All containers available on the system can be listed via:

1 docker ps -a

Also a second container can be created from the image, by executing docker run godlovedc/lolcow a second time.
Now docker ps -a will list two containers that where created from the image godlovedc/lolcow.

A given container can also be used again. Its name can be obtained first via docker ps -a.

1 docker start -i <container_code_name>

Singularity

Singularity offers an equally comprehensive documentation. Especially the quick start section is worth having a look
at. A detailed description of the installation process as well as an introduction into the usage of the singularity
command is given.

OVarFlow does not provide a dedicated Singularity image. But Docker images can be used with Singularity as well.
An usage example of the lolcow image is also included:

1 singularity pull docker://godlovdc/lolcow

Further details can be found in the linked documentation.

Finally it should be noted, that the links provided point at the documentation of the version 3.5, which is current at the
time of writing. By changing the version number in the provided links you can also obtain documentation for different
versions of Singularity.

3.5 Conda & Snakemake usage

Setting up a Conda environment and manually executing the Snakefile is the recommended way to use OVarFlow. This
method will allow you to have the maximum control of the whole process. Also, if desired, you can determine exactly
which versions of the respective programs shall be used.

3.5.1 What is needed

Before you can begin with variant calling using OVarFlow, some prerequisites have to be fulfilled. Especially certain
files have to be given. Most of the time externally supplied files:

• a reference genome in fasta format (the higher the quality the better) and

• a reference annotation in gff format (same as above).

Most of the time provided by you:

• Illumina sequencing files in fastq format of various individuals and

• (optionally) GVCF files of previous variant calling workflows on the same reference genome.

The optional incorporation of previously created GVCF files allows you to include variants you determined previously,
saving you from recomputation of those variants.

Furthermore you will need to provide:

3.5. Conda & Snakemake usage 15

https://sylabs.io/guides/3.5/user-guide/index.html
https://sylabs.io/guides/3.5/user-guide/quick_start.html

OVarFlow, Release 2.0

• a specific directory structure containing the previous mentioned files,

• a CSV file for configuration,

• the Snakefile and its Python scripts and

• a Conda environment containing the needed applications.

This section will teach you how to set everything up. It is assumed that you have a working Conda installation. If not,
have a look at the “Setup & Preparations” section. In the end the following directory structure will be created:

/path/to/project_dir/
/path/to/project_dir/conda_env/
/path/to/project_dir/variant_calling/
/path/to/project_dir/variant_calling/FASTQ_INPUT_DIR/
/path/to/project_dir/variant_calling/REFERENCE_INPUT_DIR/
/path/to/project_dir/variant_calling/OLD_GVCF_FILES/
/path/to/project_dir/variant_calling/Snakefile
/path/to/project_dir/variant_calling/scripts/average_coverage.awk
/path/to/project_dir/variant_calling/scripts/createIntervalLists.py
/path/to/project_dir/variant_calling/samples_and_read_groups.csv
/path/to/project_dir/variant_calling/config.yaml

3.5.2 Creating a Conda environment

Most of the time Conda environments reside in the home directory of the respective user, which is fine on single user
systems. In larger computational environments it is advisable to create project specific Conda environments, that reside
by your data.

1 conda create --prefix /path/to/project_dir/conda_env

The above command will create a so far empty Conda environment that is named conda_env and resides under the
specified path. The next step is to install all applications required by OVarFlow. For this you can use a yml file, listing
all direct dependencies of OVarFlow.

1 conda env update --prefix /path/to/project_dir/conda_env \
2 --file OVarFlow_dependencies_mini.yml

Now you can activate the Conda environment, so the installed applications are available in your $PATH variable.

1 conda activate /path/to/project_dir/conda_env

If the command was successful your prompt will change to show the path of the Conda environment at the beginning
of the prompt in parentheses.

3.5.3 Preparing OVarFlow

With the Conda environment active, you now have access to all needed applications. Lets create a directory for the
actual variant calling:

1 mkdir /path/to/project_dir/variant_calling

Now four files from OVarFlow’s GitLab repository have to be placed within this directory as follows:

16 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

1 /path/to/project_dir/variant_calling/Snakefile
2 /path/to/project_dir/variant_calling/scripts/createIntervalLists.py
3 /path/to/project_dir/variant_calling/scripts/average_coverage.awk
4 /path/to/project_dir/variant_calling/samples_and_read_groups.csv
5 /path/to/project_dir/variant_calling/config.yaml

The Python script (createIntervalLists.py) must be executable (file permission x):

1 cd /path/to/project_dir/variant_calling/scripts/
2 chmod ug+x createIntervalLists.py

Finally three directories have to be created, that will harbor the reference genome and annotation, the fastq Illumina
sequencing files and GVCF files from previous variant callings. Those three directories can either be created manually
or the OVarFlow Snakefile will create them. If OVarFlow creates those directories any spelling mistakes are prevented:

1 cd /path/to/project_dir/variant_calling/
2 snakemake -np

The script will prompt about the creation of those directories and exit itself. Now three additional directories have been
created:

1 /path/to/project_dir/variant_calling/FASTQ_INPUT_DIR/
2 /path/to/project_dir/variant_calling/REFERENCE_INPUT_DIR/
3 /path/to/project_dir/variant_calling/OLD_GVCF_FILES/

The respective files have to be placed into the corresponding directory. It has to be mentioned that OVarFlow has only
been tested with a single pair of forward and reverse fastq files per individual. So in case your reads are derived
from various lanes or sequencing runs you should combine all forward and reverse reads in single R1 (forward) and R2
(reverse) files.

3.5.4 The CSV configuration file

The last mandatory step before the actual variant calling is the preparation of a configuration file:

1 /path/to/project_dir/variant_calling/samples_and_read_groups.csv

A template of this file is also available within OVarFlow’s GitLab repository. Besides its purpose as configuration file
it also serves as documentation of the data evaluation. This CSV (colon separated values) file has to list the files that
were placed in the previously created directories. Furthermore it contains the read group information for each pair
of sequencing files. Also short contigs can be excluded from the reference genome. Lower quality genomes usually
are more fragmented and can contain thousands of small contigs besides some larger ones. In cases when you’re not
interested in the small contigs you might exclude those contigs, thereby accelerating data evaluation. An excerpt of the
CSV file might look like this:

Reference Sequence: cow_ref.fa.gz
Reference Annotation: cow_ref.gff.gz

Min sequence length: 800

old gvcf to include: previous_1.gvcf.gz previous_2.gvcf.gz

forward reads reverse reads ID more read group data
cow.purple_R1.fastq.gz cow.purple_R2.fastq.gz id_1 values . . .

3.5. Conda & Snakemake usage 17

OVarFlow, Release 2.0

Static values of the CSV file are set in bold face. The other fields have to be put in by the user of OVarFlow. Of course
if you don’t have any GVCF files from previous data evaluations those fields are empty, still its heading will have to be
present. If you don’t want to exclude any short sequences you can set the value to 1, meaning that every contig would
at least have to contain 1 base. Due to space limitations not every read group data is listed here.

To fill in your own values into the CSV file you might use a text editor of your liking (UTF-8 encoding and Unix line
breaks should be supported). Also you might use a spreadsheet calculation program. LibreOffice Calc has been tested
for this purpose and works just fine. This offers the advantage of the more human readable formatting.

What are read groups?

The previous section mentioned read groups. This section is for those people that are not familiar with this term. The
GATK website offers a detailed description. Basically a read group is the set of reads, that is produced in a sequencing
experiment. In practical use of OVarFlow it’s best to think of it as the forward and reverse reads of a single individual.

The read group data now are some meta data of the sequencing experiment. Those data will be used in the mapping of
the Illumina reads and become incorporated within the bam files. Also those information will be used as a heading in
the final vcf file to identify the columns of the respective individuals. Therefore an especially meaningful and unique
name has to be chosen for the SM - unique sample name field. To list all of the required read group data fields:

• forward reads: those files have to end with _R1.fastq.gz

• reverse reads: those files have to end with _R2.fastq.gz

• ID: a unique ID of your liking (e.g. ID_sampleName)

• PL - platform technology: OVarFlow has been tested and designed to be used with Illumina reads, so the value
is Illumina

• CN - sequencing center: an ID for the sequencing center that generated the reads

• LB - library name: a unique ID of your liking (e.g. lib_sampleName)

• SM - uniq sample name: choose a short, unique name for the sample

3.5.5 The YAML configuration file

Optionally further fine-tuning of the workflow is permitted through a final configuration file:

1 /path/to/project_dir/variant_calling/config.yaml

Many applications used within the workflow are based upon Java. Resource usage of the Java virtual machine (JVM)
is strongly influenced by the underlying hardware. Unfortunately default values for Java heap size and the number of
parallel garbage collection threads are not always set to optimal values. While reasonable default values are already
defined within the Snakefile, the yaml file allows for modifications in case that a certain data set requires unique settings.

Also the degree of parallelization of the workflow can be modified. The default settings will adjust bwa to use six
threads for each mapping and HaplotypeCaller to operate on four intervals in parallel. Depending on the structure of
the reference genome the number of intervals that are evaluated in parallel cannot be guaranteed, as a given genome is
only split between full contigs. Individual contigs won’t be split.

Generally this file doesn’t need to be present, but it enables adjustments if special circumstances should cause a demand
to do so.

18 Chapter 3. Motivation behind OVarFlow

https://gatk.broadinstitute.org/hc/en-us/articles/360035890671-Read-groups

OVarFlow, Release 2.0

3.5.6 Starting the workflow

Now that your Conda environment is active and all files are in place, it’s time to start the actual variant calling workflow
of OVarFlow. First of all change into the varaint_calling directory were the Snakefile resides:

1 cd /path/to/project_dir/variant_calling/

OVarFlow also allows for the functional annotation of the detected variants. This is done within the last step of the
workflow deploying snpEff as a tool to do so. As this is the last step of a long process it is especially annoying if
this step fails. From personal experience snpEff is not able to make use of every genome annotation. Gff annotations
available from the RefSeq have proven to be reliable. Still it is recommended to test if snpEff can make use of the
provided reference annotation. If it fails, it is better to fail early. First perform a dry run (snakemake -np) and then
the actual creation of the snpEff database:

1 snakemake -np create_snpEff_db
2 snakemake -p create_snpEff_db

Actual creation of the database might take a considerable amount of time. As OVarFlow is based upon Snakemake it
will detect if a database is already available and won’t recompute it during the workflow. In case anything failed have
a look at the log file:

1 less -SN /path/to/project_dir/variant_calling/logs/snpEffDB/Huhn_2Mio/report_stdout.log
2 less -SN /path/to/project_dir/variant_calling/logs/snpEffDB/Huhn_2Mio/report_stderr.log

Now that the annotation has shown to be usable a dry run of the complete workflow is advisable. This won’t perform
any actual work, but will prompt all the steps that have to be executed during the variant calling workflow:

1 snakemake -np

Finally the actual variant calling workflow can be started. Depending on your given hardware resources you will prob-
ably want to parallelize the whole process. This can easily be done by providing a command line option to Snakemake.
The --cores <number> switch will advice Snakemake to use the given number of threads/cores (alternatively, the
number of jobs can be specified --cores <number>). This allows OVarFlow to operate on several files or several
genomic intervals in parallel, thereby accelerating the computation and shortening the required time.

1 snakemake -p --cores <number>

The rest is automatically handled by OVarFlow. Depending on the provided computational resources and number as
well as size of sequencing files computation might take several days or even some weeks. During the process several
new directories will be created, storing intermediate and final results:

00_FastQC
01_mapping
02_sort_gatk
03_mark_duplicates
04_haplotypeCaller
05_gathered_samples
06_combined_calls
07_genotypeGVCFs
08_split_SNPs_Indels
09_hard_filtering
10_merged_filtered_VCF
11_filtered_removed_VCF
12_annotated_variants

(continues on next page)

3.5. Conda & Snakemake usage 19

OVarFlow, Release 2.0

(continued from previous page)

benchmarks
interval_lists
logs
processed_reference
snpEffDB

3.5.7 Alternative targets

In the above usage, the default Snakemake workflow target rule is applied. To be even more versatile, some alternative
target rules are available that execute only a subset of the entire workflow. This may save some computation time for
unnecessary calculations. However, it is always possible to rerun the entire workflow, as Snakemake will recognize
results that have already been calculated and resume the workflow from there. The following alternative target rules
are available:

noSnpEff

In case that no functional annotation of the detected variants is desired, an alternative target is available, called
noSnpEff. By specifying this as the last option of the workflow invocation, everything will be executed as before,
except for the functional annotation of the variants.

1 snakemake -p --cores <number> noSnpEff

Without executing SnpEff, there is also no need to specify a reference annotation within the CSV configuration file.
Still, the respective line has to be present in the file but no option has to be stated, e.g.:

1 Reference Sequence:,SampleSeq.fa
2 Reference Annotation:,
3 ...

variantsPerSample

The target variantsPerSample is not available in OVarFlow 2.

This alternative target rule executes the workflow up to the variant calling of each individual samples. Thereby, every
directory including 05_gathered_samples will be created.

1 snakemake -p --cores <number> variantsPerSample

dedubBAM

Finally, the workflow can also be utilized to perform just the mapping, including sorting and marking of duplicated
reads. In this process, every directory including 03_mark_duplicates will be created. Also, statistics of the average
coverage will be calculated.

1 snakemake -p --cores <number> dedubBAM

20 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.6 Configuration & adaptation

Every variant calling task and every computer system has its own specifics. Therefore, variant calling via OVarFlow
can be adjusted by two configuration files. The design decision for two different files was made consciously, as both
serve different purposes. One file provides the sample data, the other configures the workflow and its resource usage.
Prototypes of both files are to be found within the OVarFlow repository.

3.6.1 The CSV file

The file samples_and_read_groups.csv is mandatory. As the name implies it provides all data that are related to
the respective sample. In doing so, this file is also interesting for the biological side or cooperation partner, respectively.
Therefore, the comma separated values (CSV) format was chosen, as it can easily be displayed and edited by spreadsheet
applications.

The prototype of the file looks as follows:

1 Reference Sequence:,Huhn_2Mio.fna.gz
2 Reference Annotation:,Huhn_2Mio.gff.gz
3

4 Min sequence length:,2000
5

6 old gvcf to include:,fake_1.gvcf.gz,fake_2.gvcf.gz
7

8 forward reads,reverse reads,ID,PL – plattform technology,CN – sequencing center,LB –␣
→˓library name,SM – uniq sample name

9 GGA081_R1.fastq.gz,GGA081_R2.fastq.gz,id_GGA081,illumina,UBern,lib_GGA081,GGA081
10 GGA112_R1.fastq.gz,GGA112_R2.fastq.gz,id_GGA112,illumina,UBern,lib_GGA112,GGA112

With this file lines 1 to 9 have to be present. The number of lines starting from line 10 is arbitrary. It only depends on
the number of samples that shall be processed. But don’t include empty lines. Overall the file is used to provide the
following information and has to be modified accordingly:

Reference sequence

Position: line 1, field 2
Allowed endings: .fa.gz, .fna.gz, .fasta.gz

Reference annotation

Position: line 2, field 2
Allowed endings: .gff.gz
Other formats might work, but were not tested.

Min sequence length

Position: line 4, field 2
Short contigs within the reference genome can be excluded from the analysis. Here the cutoff value for the
minimum sequence length is defined. This value can be set to 1 to include any contig, no matter of its length. A
value has to be given in any case.

Old gvcf files

Position: line 7, field 2 to n
Allowed endings: .gvcf.gz

3.6. Configuration & adaptation 21

OVarFlow, Release 2.0

OVarFlow can pickup gvcf files containing the variants of single individuals. Caution: Those variants have to
be called on the same reference genome as used in the current analysis! Additional gvcf files have to be listed in
succession, separated by commas. The fields 2 to n may be left blank, if no given variants shall be included.

Sample information

Position: line 9 to n, fields 1 to 7
Here the sample information of the given analysis has to be listed. This includes the name of the fastq.gz files
and read group data. All fields are required. There is a mandatory naming scheme for the filename suffix:
_R1.fastq.gz for forward reads and _R2.fastq.gz for reverse reads. At least line 9 (a single sample) has to
be present, with an arbitrary number of succeeding lines. No empty lines shall be present.

3.6.2 The yaml file

The file config.yaml is fully optional. Most of the time OVarFlow will work without this file. Still it provides the
ability to change some internal settings of OVarFlow. OVarFlow has been highly optimized (see section: Benchmarking
& Optimizations). However, not every possible analysis can be foreseen. There might be combinations of genomes
and sequencing data that require different settings for the Java virtual machine. Such modifications of OVarFlow are
possible through this configuration file.

Considering the purpose of this file it is obvious that it is intended for the technical or bioinformatics user of the analysis.
Therefore, such information were separated from the more biological data of the CSV file.

The prototype of the file looks as follows:

1 # yaml file listing optionally available configuration
2 # options for OVarFlow
3 # no option nor the yaml file itself must be present
4 # here the default options of OVarFlow are listed
5

6 heapSize:
7 SortSam : 10
8 MarkDuplicates : 2
9 HaplotypeCaller : 2

10 GatherIntervals : 2
11 GATKdefault : 12
12

13 ParallelGCThreads:
14 SortSam : 2
15 MarkDuplicates : 2
16 HaplotypeCaller : 2
17 GatherVcfs : 2
18 CombineGVCFs : 2
19 GATKdefault : 4
20

21 Miscellaneous:
22 BwaThreads : 6
23 BwaGbMemory : 4
24 GatkHCintervals : 4
25 HCnpHMMthreads : 4
26 GATKtmpDir : "./GATK_tmp_dir/"
27 MaxFileHandles : 300
28 MemoryOverhead : 1
29

(continues on next page)

22 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

(continued from previous page)

30 Debugging:
31 CSV : False
32 YAML : False

The above template also documents the default settings that are hard-coded within the OVarFlows Snakefile. Therefore,
no changes would be applied using this file. Of course, all the numeric values can be changed. The purpose of the
individual blocks are as follows:

heapSize Range of accepted values: 1 - 40

Here the Java heap size is defined, that will be used by the individual GATK applications. The values are
provided in Gb. A value of e.g. 4 will be equivalent to setting the Java option -Xmx4G. The given names
are equivalent to the respective GATK application. Only GatherIntervals is equivalent to GatherVcfs (in earlier
versions CombineGVCFs) in cases were the HaplotypeCaller was acting on individual intervals and not the whole
genome. All remaining GATK applications, that are not executed in parallel, will use a default value of 12 Gb.

The default values were chosen to minimize memory footprint while still being quite generic. Of course, not
every possible combination of a reference genome and sequencing data can be tested. In case that the provided
amount of memory for a specific analysis is not sufficient Java will throw a java.lang.OutOfMemoryError
error. Under these circumstances increase the heap size of the affected application for the specific analysis.

ParallelGCThreads Range of accepted values: 1 - 20

The number of ParallelGCThreads has been optimized to be resource efficient while still allowing for quick
data evaluation. Currently it is rather unlikely that any changes are required. Still, just to be on the save side,
changes are possible. Finally changes to future GATK tools cannot be foreseen, that might require a modification.
Changes are equivalent to modifying the JVM option -XX:ParallelGCThreads=<n>.

Miscellaneous Range of accepted values:

bwa threads: 1 - 40
bwa memory: 1 - 20 (gigabyte)
HaplotypeCaller intervals: 1 - 100
HaplotypeCaller native pair hmm threads: 1 - 6
tmp directory: /tmp[/subdirectory] or ./<name>[/subdirectory]
File handles MarkDuplicates: 10 - 40000
Java memory overhead 0 - 10 (gigabyte)

Settings of the quantity of bwa mem thread and HaplotypeCaller intervals influence the parallelization of the re-
spective application. Of course, reasonable values depend on the given hardware resources, which are ultimately
limiting. No perfect generic value can be set, that is suitable for every user. The setting for bwa mem adjusts the
number of parallel mapping threads. The number of HaplotypeCaller intervals splits the reference genome into
intervals that are processed in parallel.

For the mapping tasks that use bwa mem, a resource request of 4 gb memory should be fine. However, some
combinations of sequencing data (fastq) and reference genome (fa) might require more than 4 gb of memory. In
particular in cluster usage, where resource requests are strictly controlled, exceeding these requests might result
in application termination. Thus, in such a situation, memory limits have to be increased.

The HaplotpyeCaller possesses an option to adjust the number of so-called native pairHMM threads. The higher
this number, the higher the CPU usage of the HaplotypeCaller (also see benchmarking section). To execute more
HaplotypeCallers in parallel a value of 1 should be chosen. In this case each individual HaplotypeCaller will
run a little bit slower. Otherwise 4 is the optimal value (which is the default).

The directory where GATK stores temporary data can be configured. Allowed values are /tmp and subdirectories
therein as well as any directory within the current working directory (./<name>). Directory names have to consist
of alphanumeric characters, ., _, - and /.

3.6. Configuration & adaptation 23

OVarFlow, Release 2.0

GATK MarkDuplicates tends to open an enormous amount of files. The number of open file descriptors can be
beyond the limits of some systems (see ulimit -Hn and ulimit -Sn). A fixed value of 300 file descriptors is
the default of OVarFlow but can be adjusted to fit custom needs.

The workflow has been designed so that memory usage can be scheduled via the --resources mem_gb=<n>
command line option, just like CPU usage can be schedule through the --cores <n> directive. For Java appli-
cations, memory scheduling takes into account the respective heap size plus an additional overhead for non-heap
memory. This overhead is set to 1 gigabyte by default. This setting is particularly useful when memory resources
are requested in cluster usage.

Debugging Range of accepted values: True or False (no quotation marks)

This option enables the debugging output, showing the settings provided by the csv (sample file) and the yaml
file (configuration file). Actually any value that translates to a boolean Python value is possible, but True is the
only reasonable choice.

Not only is the usage of the yaml file optional, also not every setting is required. If default settings for most applications
shall be preserved those settings don’t need to be provided. The following example would also be a valid config.yaml
file:

1 heapSize:
2 GatherIntervals : 5
3

4 Miscellaneous:
5 BwaThreads : 8
6 GatkHCintervals : 8

3.6.3 Memory recommendations

As noted above, some combinations of given reference genome and sequencing data may require different settings in
the config.yaml file. Genome size, genome fragmentation, and sequencing depth affect memory requirements. Most
thorough testing has been performed using a chicken genome (GRCg6a) and sequencing data up to 34-fold average
coverage. Based on those experiences, default values were selected that were also found to be appropriate for various
mammalian datasets. However, some mammalian data might require more memory, in particular if the risk of a failed
workflow is to be avoided at all costs (thanks to Snakemake, a failed workflow can be restarted at any time). There are
two situations where low memory requests can cause the workflow to fail:

• A java.lang.OutOfMemoryError if the heap size was chosen to low. MarkDuplicates and the HaplotypeCaller
might be affected by this.

• An oom-kill event can occur in cluster usage where resource request are strictly controlled. An error message
like the following is indicative for such a situation: Some of your processes may have been killed by the cgroup
out-of-memory handler. Such an error happens when the “Java memory overhead” or if memory request for bwa
is insufficient.

A minimal configuration, which should be fairly safe, looks like this:

1 heapSize:
2 MarkDuplicates : 4
3 HaplotypeCaller : 3
4

5 Miscellaneous:
6 BwaGbMemory : 8

When choosing such values, keep in mind that unnecessarily high values block resources, especially when using com-
pute clusters. To learn about reasonable values for the given use case, one can perform an initial run with save settings

24 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

and observe the actual consumed resident set size based on the recorded benchmarks in the benchmarks directory. A
sorted list of the consumed memory, for instance during mapping, can be obtained with the following shell commands:

1 cd benchmarks/01_mapping
2 for f in *bm
3 do
4 tail -1 $f | cut -f3
5 done | sort -n | less

The largest values can then be used as an indicator of the upper bounds of the memory requirements of the given data
set.

3.7 Advanced usage topics

The previous section was a broad introduction into the general usage of OVarFlow. The commands were basically
executed on a single computer or server and program execution was supposed to proceed flawlessly. However that’s the
ideal use case. This section is dedicated to the execution of OVarFlow in a more advanced computer environment and
gives advice in case of failure. Furthermore advice is given to achieve reproducibility even on different computational
hardware.

3.7.1 Cluster usage - SGE

Variant calling is computationally demanding. Common desktop computers are by no means suitable for this task. So
that at least high end desktop (HEDT) CPUs are required, offering two dozens of cores or even more. Of course the
more resource are made available the quicker the computation can be finished. Therefore usage of a compute cluster
should also be considered.

Obviously this section is dedicated to the cluster usage of OVarFlow. As OVarFlow is based upon Snakemake, all options
privided by Snakemake for cloud computing and cluster usage are available as well. OVarFlow has successfully been
used with Sun Grid Engine (SGE) (Son of Grid Engine is its successor). The following examples have to be adopted
for the use with other cluster management software.

On a single large cluster node

One issue with GATK is, that some of its applications cause rather short load peaks, while using much more moderate
resource during the majority of their runtime. When using a compute cluster, a general rule of thumb is to request the
maximum amount of resources, that is to be expected during runtime. The request of maximum resource requirements
will prevent a slowdown of the cluster node, but also waste the resources that are not used most of the time.

One idea to handle this contradiction is to reserve all resources of one cluster node to be used by OVarFlow. Peak loads
are more or less ignored within this approach. OVarFlow is then configured to utilize all available resources most of
the time. So if there is a slowdown within the used cluster node, due to peak loads, only OVarFlow will be affected,
thereby not standing in the way of other users.

This approach has successfully been used on an SGE based cluster. If you’re using a different cluster management
software you’ll have to adopt the steps accordingly. Complex cluster jobs are best submitted using a submit shell script.
At the beginning of such a script the resource requests can be configured. If chosen correctly this will result in the
exclusive reservation of the cluster node for OVarFlow.

This procedure is only recommended if reasonably capable cluster nodes are available. In a test a single cluster node
provided:

• 40 threads (Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz)

3.7. Advanced usage topics 25

https://snakemake.readthedocs.io/en/v5.18.0/executing/cluster-cloud.html
https://snakemake.readthedocs.io/en/v5.18.0/executing/cluster-cloud.html

OVarFlow, Release 2.0

• 256 GB of memory

By requesting 40 cores (<parallel_environment_name> has to be replaced with your local configuration), the node
was exclusively reserved. Also the hostname= directive will let you choose a certain target host. The use of wildcards
allows for the selection of a range of certain cluster nodes. An example of a whole submit script is listed below:

1 #!/bin/bash
2

3 #$ -q queue_name.q
4 #$ -cwd
5 #$ -V
6 #$ -o output.txt
7 #$ -e error.txt
8 #$ -pe <parallel_environment_name> 40
9 #$ -l virtual_free=6000M

10 #$ -l hostname=<node-prefix*>
11

12 # write the name of the execution host to a file
13 hostname > TIME_STAMP
14 # write down the starting time
15 echo "start at:" >> TIME_STAMP
16 date >> TIME_STAMP
17

18 # the Conda environment has to be activated
19 # in older Conda versions -V was needed using the following command
20 #. activate /path/to/project_dir/conda_env
21 # now you use
22 conda activate /path/to/project_dir/conda_env
23

24 snakemake -p --cores 40
25

26 # write down the end time
27 echo "end time:" >> TIME_STAMP
28 date >> TIME_STAMP

With SGE the actual submission of the job to the cluster is then achieved through a single command:

1 qsub <submit_script_name>

On an entire cluster

In case that potential load peaks caused by GATK are of no concern, an entire Cluster for OVarFlow is possible as well.
Thereby unleashing all of the resources of the entire cluster to OVarFlow. This is probably the most efficient way of
using OVarFlow.

The ability for cluster execution is build into Snakemake. But precaution has to be taken, that the Conda environment is
available for the cluster jobs. One option is to export the current environment with the -V option of the qsub command:

1 conda activate /path/to/project_dir/conda_env
2 cd /path/to/project_dir/variant_calling
3 snakemake -p --cores 20 --cluster 'qsub -V -cwd -b y -pe <parallel_environment> {threads}

→˓'

The above command will automatically use the number of {threads} for each command as defined in the
workflow, while using a maximum of 20 threads in parallel for all currently submitted jobs. Certainly the

26 Chapter 3. Motivation behind OVarFlow

https://snakemake.readthedocs.io/en/v5.18.0/executing/cluster-cloud.html#cluster-execution

OVarFlow, Release 2.0

<parallel_environment> argument must be replaced with the respective name of your local cluster environment.
One drawback is, that the cluster management software will write four log files for each submitted job into the cur-
rent directory. To tidy things up, it is advisable to create a log directory and include this into the cluster submission
command:

1 conda activate /path/to/project_dir/conda_env
2 cd /path/to/project_dir/variant_calling
3 mkdir logs_cluster
4 snakemake -p --cores 20 --cluster 'qsub -V -cwd -o logs_cluster -e logs_cluster -b y -pe

→˓<parallel_environment> {threads}'

One thing to consider is, that the above command will reveal all of the users environment variables publicly (qstat
--cores <job_number> under the entry env_list).

3.7.2 Cluster usage - Slurm

Slurm is an alternative cluster managment and job scheduling system. In recent years it gained popularity over SGE,
which suffers from maintenance issues. Fortunately, Snakemake and Slurm work with one another just as well as SGE
does.

On a single large cluster node

Submitting the entire workflow to a single cluster node is quite simple with slurm. The srun command accomplishes
this purpose. Slurm’s job submission system automatically exports the user’s current environment (default option
--export=ALL). To benefit from this feature, the corresponding Conda environment should be activated first. After-
wards, the workflow can be tested through a dry run:

1 conda activate /path/to/project_dir/conda_env
2 srun -c 28 --mem 50g snakemake -np --cores 26 --resources mem_gb=48

The above command also illustrates how resource requests can be made. Many cluster systems are very strict about
resource requests. In this case, a job won’t be allowed to use more CPU resource than requested, and if a job consumes
more memory than requested, it might even be terminated. The above command performs resource requests in two
ways. First, 28 cores and 50 Gb of memory are requested from the cluster management system (the values used are just
an example and need to be adjusted to the size of the given dataset). Second, to ensure that the requested resource are
not exceeded, the Snakemake scheduler is configured to use slightly less resources. It should be noted that resource
requests are neither automatically transfer nor matched between Slurm and Snakemake. Therefore, both must be set
manually. Once the dry run has been successfully executed, the actual workflow can be started:

1 srun -c 28 --mem 50g snakemake -p --cores 26 --resources mem_gb=48

On an entire cluster

Of course, when dealing with very large datasets, it is not reasonable to restrict oneself to the use of a single cluster
node. Snakemake itself is capable of handling such a large scale submission, but on the side of Slurm, the sbatch
command has to be used this time:

1 conda activate /path/to/project_dir/conda_env
2 snakemake --default-resources mem_gb=16 -p --cores 200 --cluster 'sbatch -c {threads} --

→˓mem {resources.mem_gb}G'

3.7. Advanced usage topics 27

OVarFlow, Release 2.0

Again, the Conda environment is activated first. This time, no dry run is performed, but the workflow is executed
directly. Depending on the size of the given dataset and cluster, a reasonable large number of n cores should be used.
Snakemake automatically schedules resource requests ({threads} and {resources.mem_gb}) for each individual
job. These resource requests are based upon the setting made in the config.yaml file. For instance, memory requests
are inferred from the configured heap size and Java memory overhead (see configuration section). By this mechanism,
reasonable settings are selected for most jobs. Not every rule of the workflow has a predefined memory requirement.
For these rules, a default of 16 Gb is requested in the above command.

3.7.3 Trouble shooting

OVarFlow has been designed for easy and automatic execution of the variant calling workflow. As the underlying
processes are quite complex and involve a lot of various software tools, runtime errors can not be excluded within
those tools, that OVarFlow is ultimately relying on. Furthermore the respective computational environment can be a
source of failure as well. Variant calling will involve high performance computing most of the time. This involves a
variety of hardware resources with servers dedicated to computation and others dedicated to data storage. Failure in
this environment might result in unavailability of data, causing a running calculation of OVarFlow to fail and ultimately
leading to termination of the workflow.

The good news is, thanks to its Snakemake basis, OVarFlow can often recover from such situations. Albeit manual
intervention might be needed in such circumstances.

Often Snakemake itself can pick up an interrupted workflow. Executing a dry run might give first insights:

1 snakemake -np --rerun-incomplete

If this command succeeds the real execution can be performed, of course while specifying a reasonable number of
threads (--cores) to accelerate calculations. Also it might be interesting to see the reason why a specific command is
executed (--reason):

1 snakemake -p --cores <number_of_threads> --rerun-incomplete --reason

In case that Snakemake was interrupted previously, it might block re-execution (so-called lock):

Error: Directory cannot be locked. Please make sure that no other Snakemake process is␣
→˓trying
to create the same files in the following directory:
/path/to/project_dir/variant_calling
If you are sure that no other instances of snakemake are running on this directory, the
remaining lock was likely caused by a kill signal or a power loss. It can be removed␣
→˓with the
--unlock argument.

In such a situation the lock can be removed and the workflow can be rerun:

1 snakemake --unlock
2 snakemake -p --cores <number_of_threads> --rerun-incomplete --reason

Some times more manual interaction is necessary. First of all it’s good to know in which step the error occurred.
Therefore the following points could be checked:

• The console log of the commands that were executed by Snakemake.

• The log messages of every single command, written within the log directory.

• The files and directories that were already created by the workflow.

28 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

• Is every created file complete? Compared with other files of the same type are file sizes reasonable and are the
expected index files (e.g. .bam and .bam.bai) present?

If certain files are corrupted those can be removed manually via the rm command. In cases where a disaster recovery is
not possible, the whole workflow can be started newly by removing the directories that were created (including logs
and .snakemake) and restarting the workflow:

1 rm -rf 00_FastQC [01_...] logs .snakemake
2 snakemake -p --cores <number_of_threads>

3.7.4 Error identification

The ability to restart a failed workflow can be very helpful. But this feature is only useful, if the problem that cause the
workflow to fail can be identified. Here, an example of a failed workflow will be shown and also how to identify the
causative problem.

The workflow was terminated with the following final messages:

...
Finished job 3039.
1111 of 3097 steps (36%) done
[Sat Jul 10 03:56:53 2021]
Finished job 2816.
1112 of 3097 steps (36%) done
[Sat Jul 10 04:11:46 2021]
Finished job 2939.
1113 of 3097 steps (36%) done
[Sat Jul 10 04:20:47 2021]
Finished job 2814.
1114 of 3097 steps (36%) done
Shutting down, this might take some time.
Exiting because a job execution failed. Look above for error message
Complete log: /path/to/project_dir/.snakemake/log/2021-07-08T142952.561603.snakemake.log
(conda: conda_env)user@host:/path/to/project_dir/variant_calling$

Snakemake returned to the shell prompt, after an exhaustive series of jobs was finished, of which one had failed. This
resulted in the above error message, only the already running jobs were finished, and no further jobs were started. The
actual error message of the job that failed is not shown. It can be identified by either scrolling upwards, till the message
appears or by viewing the stated log file (which is a copy of the messages shown on the shell). In doing so, a more
comprehensive error message is found:

...
Error in rule mark_duplicates:
jobid: 769
output: 03_mark_duplicates/sample-82.bam, 03_mark_duplicates/sample-82.txt
log: logs/03_mark_duplicates/sample-82.log (check log file(s) for error message)
shell:

export _JAVA_OPTIONS=-Xmx2G
gatk --java-options -XX:ParallelGCThreads=2 MarkDuplicates -I 02_sort_gatk/sample-

→˓82.bam -O 03_mark_duplicates/sample-82.bam -M 03_mark_duplicates/sample-82.txt -MAX_
→˓FILE_HANDLES 300 --TMP_DIR ./GATK_tmp_dir/ 2> logs/03_mark_duplicates/sample-82.log

one of the commands exited with non-zero exit code; note that snakemake uses bash␣
→˓strict mode!)
cluster_jobid: Your job 963665 ("snakejob.mark_duplicates.769.sh") has been submitted

(continues on next page)

3.7. Advanced usage topics 29

OVarFlow, Release 2.0

(continued from previous page)

Error executing rule mark_duplicates on cluster (jobid: 769, external: Your job 963665 (
→˓"snakejob.mark_duplicates.769.sh") has been submitted, jobscript: /path/to/project_dir/
→˓variant_calling/.snakemake/tmp.jz4k0i0y/snakejob.mark_duplicates.769.sh). For error␣
→˓details see the cluster log and the log files of the involved rule(s).
...

This error message educates us about the exact job and its rule that failed. In this case, a job spawned from the rule
mark_duplicates failed. That’s a step forward, but the actual error message is still hidden in the reported log file
logs/03_mark_duplicates/sample-82.log:

[Fri Jul 09 14:07:25 CEST 2021] picard.sam.markduplicates.MarkDuplicates done. Elapsed␣
→˓time: 45.92 minutes.
Runtime.totalMemory()=1908932608
To get help, see http://broadinstitute.github.io/picard/index.html#GettingHelp
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded

at java.util.Arrays.copyOfRange(Arrays.java:3664)
at java.lang.String.<init>(String.java:207)
at java.lang.String.substring(String.java:1969)
at picard.sam.util.ReadNameParser.getLastThreeFields(ReadNameParser.java:146)
at picard.sam.util.ReadNameParser.addLocationInformation(ReadNameParser.java:83)
at picard.sam.markduplicates.MarkDuplicates.buildReadEnds(MarkDuplicates.

→˓java:661)
at picard.sam.markduplicates.MarkDuplicates.

→˓buildSortedReadEndLists(MarkDuplicates.java:552)
at picard.sam.markduplicates.MarkDuplicates.doWork(MarkDuplicates.java:257)
at picard.cmdline.CommandLineProgram.instanceMain(CommandLineProgram.java:301)
at org.broadinstitute.hellbender.cmdline.PicardCommandLineProgramExecutor.

→˓instanceMain(PicardCommandLineProgramExecutor.java:37)
at org.broadinstitute.hellbender.Main.runCommandLineProgram(Main.java:160)
at org.broadinstitute.hellbender.Main.mainEntry(Main.java:203)
at org.broadinstitute.hellbender.Main.main(Main.java:289)

The above error message is a Java stack trace caused by the GATK tool MarkDuplicates. This educates us about the
root cause of the problem: Exception in thread "main" java.lang.OutOfMemoryError: GC overhead
limit exceeded. The OutOfMemoryError tells us, that insufficient Java heap space was provided for this specific
job. This problem can easily be fix within the workflow, by providing a larger heap space to MarkDuplicates in the
configuration file config.yaml (also see the section “Configuration & adaptation”). The required entry could look
like this:

heapSize:
MarkDuplicates : 4

Thereby, the standard heap size would be doubled. After this simple fix, the workflow can be restarted and finished.
Generally, the workflow tries to find a balance between resource efficiency and broad applicability. In some special
cases, individual GATK applications need to be provided with more resource, which would be wasteful when evaluating
smaller datasets.

30 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.7.5 Reproducibility

Reproducibility has been among the primary scopes of OVarFlow. Three components of OVarFlow serve this purpose:

• the workflow itself (aka the Snakefile),

• the CSV file to document and configure data evaluation,

• the Conda environment with its specific program versions.

The yml (OVarFlow_dependencies.yml) file only includes the major dependencies of OVarFlow. To automatically
obtain the latest program versions for new variant callings, no specific program versions are denoted here. To achieve
perfect reproducibility all installed programs as well as their versions have to be obtained from a given Conda environ-
ment. This is a part of the management of Conda environments. Basically this boils down to the creation of a yml file
of the given environment, which includes all programs and their version numbers:

1 conda activate /path/to/project_dir/conda_env
2 conda env export > conda_environment.yml

The Conda environment can easily be recreated out of this yml file:

1 conda env create -f conda_environment.yml

3.8 Docker & Singularity usage

A different approach to use OVarFlow is its Docker container or image, respectively. The Docker container bundles all
the software that is needed to execute the OVarFlow workflow. There is no need to install or download the individual
components of OVarFlow or to create a Conda environment.

This simplification of course comes at a cost. First of all Docker requires system administrator privileges. Also the
bundled software components can’t be updated, as it can be done with a Conda environments. Finally cluster usage
(e.g. SGE) is not the scope of the OVarFlow container. Container usage of OVarFlow has been designed to be utilized
on a single larger machine. The need for administrator privileges can be circumvented by the us of Singularity, as an
alternative container virtualization technology, instead of Docker.

3.8.1 Docker

The Docker images of OVarFlow, to create a new container, are available on Docker Hub. Different versions of the
image might be available. Each version has a distinct tag, showing the build date of the image. The Docker command
can be used to download the image from Docker Hub and to make it locally available:

1 docker pull ovarflow/release:<tag>

Of course <tag> has to be replaced with the version you want to download.

After downloading the image make sure, that it’s indeed locally available:

1 docker images

Now prepare a directory for the workflow, where your sequencing data are made available and where the results of the
workflow will be stored. You can name the directory arbitrarily (here project_dir). Also three more directories have
to be created within this main directory:

3.8. Docker & Singularity usage 31

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://hub.docker.com/r/ovarflow/release

OVarFlow, Release 2.0

1 mkdir project_dir
2 mkdir project_dir/FASTQ_INPUT_DIR
3 mkdir project_dir/REFERENCE_INPUT_DIR
4 mkdir project_dir/OLD_GVCF_FILES

The three uppercase directories can also be created by OVarFlow, but in any case you would need to fill in the respective
content manually. Which is also the next step to perform.

project_dir/FASTQ_INPUT_DIR Has to contain your Illumina sequencing files in fastq format. For each individual
to be analyzed you have to provide two files, one file (R1) containing the forward reads and one file (R2) the
reverse reads. If you have various sequencing files for each individual merge all forward and all reverse reads
beforehand.

project_dir/REFERENCE_INPUT_DIR Has to contain two files: a reference genome in fasta format and a reference
annotation in gff format. Files that were obtained from the RefSeq have been utilized successfully with OVarFlow.

project_dir/OLD_GVCF_FILES May contain some gvcf files from previous variant callings. This allows for the
inclusion of individuals that were already analyzed, thereby the most time consuming steps (including mapping
and variant detection with HaplotypeCaller) won’t have to be recomputed. Of course those files must have been
analyzed with the same reference genome and annotation, as is used in this analysis.

Finally a csv file called samples_and_read_groups.csv has to be present in the project_dir. This file serves for
the configuration of the workflow, telling OVarFlow which files to use. Thereby this csv file also serves documentational
purposes. A sample of this file can be obtained from OVarFlows GitLab repository. A detailed description of the file
format can be found under Conda & Snakemake usage => The CSV configuration file.

Now that everything is prepared you can create and execute a docker container of OVarFlow:

1 docker run -it -v /path/to/project_dir:/input ovarflow/release:<tag>

Of course the <tag> has to be replaced with the version you’re using. The option -v will bind mount a volume within
the container. Thereby the directory /path/to/project_dir is made available under the path /input within the
running container.

Now the OVarFlow workflow is already running and no further manual interaction should be required.

Resource utilization

The Docker Image has been designed to make high use of the available resources. The number of available CPU
cores (or threads to be more precise) is automatically detected. The OVarFlow will then use available cores - 4 within
its Snakemake workflow. For instance if 32 cores are available OVarFlow will use 28 of those cores, with the in-
ternal Snakemake command of snakemake -p --cores 28 --snakefile /snakemake/Snakefile. Of course
OVarFlow allows for the modification resource utilization. In this case an additional option has to be passed to the
OVarFlow container forwarding an environment variable:

1 docker run -it -e THREADS='<number>' -v /path/to/project_dir:/input ovarflow/release:
→˓<tag>

In any case the <number> that is passed to OVarFlow should not exceed the number of available threads. It is the users
responsibility to take care of this.

32 Chapter 3. Motivation behind OVarFlow

https://www.ncbi.nlm.nih.gov/refseq/
https://gitlab.com/computational-biology/ovarflow/

OVarFlow, Release 2.0

Obtaining the yml file

If you need to know about the single software versions that are used within OVarFlow’s Docker container, you can also
extract that information from the container. To do so you must first open a shell within the container.

1 docker run -it -v /home/ubuntu/project_dir:/input ovarflow/release:<tag> /bin/bash

Within the running container make the Conda environment available and extract the version information to a yml file:

1 conda init bash
2 bash
3 activate conda OVarFlow
4 conda env export > /input/conda_env_OVarFlow.yml
5 exit; exit

The above commands perform the following actions: (1) initializes Conda. (2) the changes made in the previous step
must be made available within a newly opened bash shell. As can be seen from the changes to the prompt ((base)
root@...:/#) the Conda base environment is now active. (3) activates the OVarFlow Conda environment. The prompt
changes again ((OVarFlow) root@...:/#). (4) exports the OVarFlow environment into a yml, that will be written
to /path/to/project_dir, outside of the Docker Container. (5) will log you out of the two opened bash shells.

Final note on Docker

One thing that has to be mentioned is, that every time docker run is invoked, a new container is created from the
OVarFlow Docker image. To get an overview of the containers that were already created execute docker ps -a. It
might be reasonable to sometimes delete old containers docker rm <container_name>.

3.8.2 Singularity

Singularity allows you to do the same tasks that Docker does, but without the need for administrator privileges. Making
Singularity a popular choice in high performance scientific computing. Also usage of Singularity containers is generally
a bit different from Docker images and containers. First of all create a sif file (Singularity image format) from the Docker
image. The data will be retrieved from Docker Hub:

1 singularity build OVarFlow_<tag>.sif docker://ovarflow/release:<tag>

This sif file contains the whole OVarFlow workflow including all software dependencies. Now prepare a project_dir
as it was done with Docker (see above). The workflow can now be started via:

1 singularity run --bind /path/to/project_dir:/input OVarFlow_<tag>.sif

Just like with Docker, executing OVarFlow with Singularity, will autodetect the number of cores (threads) that are
available on the respective computer. Again the default setting of the used number of cores is available cores - 4.
Changing this setting by setting an environment variable called THREADS and then running the Singularity container:

1 export THREADS=<desired_number_of_threads>
2 singularity run --bind /path/to/project_dir:/input OVarFlow_<tag>.sif

3.8. Docker & Singularity usage 33

OVarFlow, Release 2.0

Manual start of OVarFlow

Singularity also makes the OVarFlow workflow accessible from a command line. Singularity easily allows to run a
shell within the container.

1 singularity shell --bind /path/to/project_dir:/input OVarFlow_<tag>.sif

This command will bind mount (--bind) the project directory within the container under the path /input. Also the
users home directory is automatically available within the container. The root folder (/) of the host operating system
will be overlaid by the root of the container. Therefore the bind mount command is needed as no directory outside of
the users home will be available otherwise.

In case that there is a warning bash: warning: setlocale: LC_ALL: cannot change locale (en_US.
utf8), the message can be ignored. It won’t interfere with the workflow.

After opening the shell, you might for instance want to perform a dry run of Snakemake:

1 cd /input
2 snakemake -np --snakefile /snakemake/Snakefile

Or start the actual workflow, like it would be done with the manual installation of OVarFlow:

1 cd /input
2 snakemake -p --cores <threads> /snakemake/Snakefile

Starting the BQSR-workflow only requires a different Snakefile:

1 cd /input
2 snakemake -np --snakefile /snakemake/SnakefileBQSR
3 snakemake -p --cores <threads> /snakemake/SnakefileBQSR

Obtaining the yml file

The exact software versions, that are being used in the Singularity container, can also be extracted into a yml file. First
of all a shell can easily be opened within the Singularity container:

1 singularity shell OVarFlow_<tag>.sif

The users home directory will automatically be mounted with the now running Singularity container, and all data from
the home directory are thereby accessible. Besides this the whole content of the container is available. Therefore
the OVarFlow Conda environment can be activated and exported. The commands are identical to ones used with the
Docker container:

1 conda init bash
2 bash
3 conda avtivate OVarFlow
4 conda-env export > /path/to/project_dir/conda_env_OVarFlow.yml
5 exit; exit

34 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.9 The BQSR workflow

The workflow previously described, will already supply a fully annotated set of variants. To further refine the called
variants, the GATK team recommends to perform base quality score recalibration (BQSR). Therefore BQSR was im-
plemented in a second workflow, that can optionally be run in succession to the first workflow, to further improve the
called variants through BQSR. The most obvious downside is, that the execution of a second workflow will increase
the time till the final results are available, nearly doubling it. Also a second point should at least be considered. The
called variants are used to refine the given data set itself. This self-improvement might at least potentially introduce a
certain bias. Still this procedure is strongly recommended by the GATK team and should therefore be legit.

3.9.1 Setup & preparations

The BQSR workflow requires some additional applications. Especially GATK AnalyzeCovariates heavily relies on
R and several R packages. The lack of those packages will result in error logs under logs/15_analyze_BQSR/
<sample>_AnalyzeCovariates.log like the following:

Stderr: Error in library(gplots) : there is no package called ‘gplots’

Therefore a specialized Conda environment has to be created for the BQSR workflow. This Conda environment will
include all applications used in the normal workflow, plus R and the required R packages. If the BQSR workflow shall
be run anyways, this Conda environment can also be used for the normal workflow. It is created like this (the YAML
file is found in the repository):

1 conda env create --prefix /path/to/project_dir/BQSR_env --file BQSR_dependencies_mini.yml

Finally the new Conda environment has to be activated:

1 conda activate /path/to/project_dir/BQSR_env

Now the actual workflow has to be copied from the repository and placed into the project directory:

/path/to/project_dir/variant_calling/SnakefileBQSR
/path/to/project_dir/variant_calling/configBQSR.yaml # optionally

3.9.2 Workflow usage

The BQSR workflow builds upon the normal workflow. As a result of this the normal variant calling has to be preformed
first and the following files have to be created through this workflow:

/path/to/project_dir/variant_calling/03_mark_duplicates/<file_names>.bam
/path/to/project_dir/variant_calling/03_mark_duplicates/<file_names>.bam.bai
/path/to/project_dir/variant_calling/11_filtered_removed_VCF/variants_filtered.vcf.gz
/path/to/project_dir/variant_calling/interval_lists/<interval_xy>.list
/path/to/project_dir/variant_calling/processed_reference/<file_name>.fa.gz
/path/to/project_dir/variant_calling/processed_reference/<file_name>.fa.gz.fai
/path/to/project_dir/variant_calling/processed_reference/<file_name>.fa.gz.gzi
/path/to/project_dir/variant_calling/processed_reference/<file_name>.dict
/path/to/project_dir/variant_calling/snpEffDB/<directory_name>/genes.gff
/path/to/project_dir/variant_calling/snpEffDB/<directory_name>/sequences.fa.gz
/path/to/project_dir/variant_calling/snpEffDB/<directory_name>/snpEffectPredictor.bin

3.9. The BQSR workflow 35

https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

OVarFlow, Release 2.0

An initial dry run can be performed to test for any missing files, spelling mistakes and the like. In any case the Snakefile
for the BQSR workflow must explicitly be specified (-s option), otherwise the normal workflow might be reexecuted:

1 cd /path/to/project_dir/variant_calling/
2 snakemake -np -s SnakefileBQSR

Finally the BQSR workflow can be executed. To achieve parallelization and thereby shorter runtimes, the number of
used threads (--cores) can be specified (depends on the given infrastructure):

1 snakemake -n --cores <threads> -s SnakefileBQSR

The workflow will create the following directories:

13_start_BQSR
14_apply_BQSR
15_analyze_BQSR
16_haplotypeCaller_2
17_gathered_samples_2
18_combined_calls_2
19_genotypeGVCFs_2
20_split_SNPs_Indels_2
21_hard_filtering_2
22_merged_filtered_VCF_2
23_filtered_removed_VCF_2
24_annotated_variants_2
logs/<various_sub_directories>
benchmarks/<various_sub_directories>

Optimized workflow execution

The workflow possesses different phases, which can be parallelized to variable degrees. Some rules might even be
postponed to phases that cannot be parallelized as much. This helps in optimizing the overall runtime. This can be
achieved by the --prioritize switch, that assigns highest priority to a given target rule and its direct dependencies:

1 snakemake -n --cores <threads> -s SnakefileBQSR --prioritize genotypeGVCFs_2

As above mentioned, the BQSR workflow depends on the previous execution of the normal workflow. It is possible
to run both workflows in direct succession. In this case the BQSR Conda environment has to be activated for both
workflows. A single command can then be used to execute both workflows in direct succession:

1 snakemake -p --cores <threads>; \
2 snakemake -p --cores <threads> -s SnakefileBQSR

There may not be an unprotected Enter between the two commands. It’s also possible to write both commands in a
single line.

36 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.9.3 Workflow configuration

The workflow will automatically detect the files, that were generated during the first workflow and further process
those. So for the BQSR workflow the samples_and_read_groups.csv file is neither needed nor used.

There is one optional configuration file, named configBQSR.yaml. A template of this file can be found in the reposi-
tory. It’s intended to configure the internal behavior of the workflow, mainly Java heap size and the number of garbage
collection threads. This file is the equivalent to the config.yaml used in the first workflow.

1 # yaml file listing optionally available configuration
2 # options for OVarFlow BQSR
3 # no option nor the yaml file itself must be present
4 # here the default options of OVarFlow are listed
5

6 ParallelGCThreads:
7 BaseRecalibrator : 2
8 ApplyBQSR : 2
9 AnalyzeCovariates : 2

10 HaplotypeCaller : 2
11 GatherIntervals : 2
12 CombineGVCFs : 2
13 GATKdefault : 4
14

15 heapSize:
16 BaseRecalibrator : 2
17 ApplyBQSR : 2
18 AnalyzeCovariates : 2
19 HaplotypeCaller : 2
20 GatherIntervals : 2
21 CombineGVCFs : 2
22 GATKdefault : 12
23

24 Miscellaneous:
25 GATKtmpDir : "GATK_tmp_dir"
26 HCnpHMMthreads : 4
27 DebuggingYAML : False
28 DebuggingSAMPLE : False

The above template also documents the default settings used in the BQSR workflow. This workflow uses some addi-
tional GATK applications, which can be optimized through this configuration file. The values after the colon can be
adjusted as follows:

heapSize Range of accepted values: 1 - 40

The same general rules apply to this section as mentioned in the Configuration & adaptation section under The
yaml file paragraph, concerning Java heap size.

ParallelGCThreads Range of accepted values: 1 - 20

The same general rules apply to this section as mentioned in the Configuration & adaptation section under The
yaml file paragraph, concerning Java GC threads.

Miscellaneous Range of accepted values:

GATKtmpDir: /tmp[/subdirectory] or ./<name>[/subdirectory]
HaplotypeCaller intervals: 1 - 100
DebuggingYAML: False or True

3.9. The BQSR workflow 37

OVarFlow, Release 2.0

DebuggingSAMPLE: False or True

In this section the directory used by GATK to store temporary data can be adjusted. The default is to use a
directory GATK_tmp_dir within the project directory.

The number of native pair hmm threads used by GATK HaplotypeCaller can also be adjusted. A value of 1 can
increase parallelization, meaning more HaplotypeCaller processes can run in parallel. While a value of 4 will
give the quickest execution of the individual HaplotypeCaller process.

A debugging output of the settings made in this YAML file can be enabled, basically echoing the settings made.

Finally a debugging output of the input data that are processed during the analysis can be enabled.

As before the YAML file can be shortened only to those values that shall be changed, see the Configuration & adaptation
section.

3.9.4 Container usage

As with the “normal workflow”, a container is available for the BQSR workflow. This container includes everything
that is needed for the entire variant calling: the normal workflow, the BQSR workflow and all the required software.
Of course this comes at the cost of a larger container. User that only intend to perform variant calling without BQSR
can stick to the smaller container. In any case the usage of a container frees the user from the installation of Conda and
creation of a Conda environment. All of this comes with the container.

As before there are plenty of ways to use the container. First of all Docker or Singularity can be used as a container
technology. Then there are various ways to execute the workflow with the respective container technology. The follow-
ing description is focused on Singularity, as it’s more straight forward than Docker. Still there are several ways to use
Singularity containers. The below list ranges from highly automated to more manual usage. The latter allow for more
control of the workflows, if needed.

Automatic start of the workflow

The entire variant calling including BQSR can be started with a single command. But first of all a project directory
and a CSV configuration file have to be prepared. Those steps are described in detail under Conda & Snakemake usage
=> Preparing OVarFlow / The CSV configuration file. The workflow is then started via:

1 singularity run --bind /path/to/project_dir/:/input/ OV_BQSR.sif

If all preparations were done correctly various log messages will appear starting with:

1 No THREADS variable set. Using default settings.
2

3 Using the following number of threads:
4 ->_xy_<-
5 Starting OVarFlow now:
6

7 Building DAG of jobs...
8 ...

In case that something is still missing or for instance a wrongly named annotation file in the CSV configuration file
(here: SampleSeq.gff instead of SampleAnn.gff), an error message like the following might be shown:

1 Building DAG of jobs...
2 MissingInputException in line 851 of /snakemake/Snakefile:
3 Missing input files for rule create_snpEff_db:

(continues on next page)

38 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

(continued from previous page)

4 REFERENCE_INPUT_DIR/SampleSeq.gff
5 IndexError in line 12 of /snakemake/SnakefileBQSR:
6 list index out of range
7 File "/snakemake/SnakefileBQSR", line 12, in <module>

There is a default value of used threads, equal to the amount of available cores (or threads) minus 4. The setting of an
environment variable before starting Singularity enables modification of number of used threads:

1 export THREADS=<desired_number_of_threads>
2 singularity run --bind /path/to/project_dir/:/input/ OV_BQSR.sif

Manual start of the workflows

Also the contents of the container can be made available within a shell. Thereby the snakefiles of the two workflows
are directly accessible.

1 user@host:~$ singularity shell --bind /path/to/project_dir/:/input OV_BQSR.sif
2 Singularity> snakemake -v
3 5.26.1
4 Singularity> cd /input
5 Singularity> snakemake -p --cores <n> -s /snakemake/Snakefile
6 Singularity> snakemake -p --cores <n> -s /snakemake/SnakefileBQSR

3.10 Example & Tutorial

This section is supposed to give a realistic example for the usage of OVarFlow. It will show how to set up and analyze
a project. To do so whole genome resequencing data of a chicken (Gallus gallus) will serve as sample data. Chicken
was chosen for several reasons:

• generally it would be an organism within the scope of OVarFlow

• the genome is of reasonable length with approx. 1 Gb, reducing the analysis time for the example

• a reference genome (GRCg6a) and annotation of reasonable quality are available

• Illumina paired end sequencing data are readily available (e.g. PRJNA291174)

3.10.1 The test data set

A script has been deposited in the OVarFlow repository to automatically download a suitable test data set
(get_chicken_low_coverage.sh). This script will automatically create the two directories Fastq and Reference
within the working directory and download four Illumina paired end data sets as well as a reference sequence and
annotation.

Even with a smaller data set, variant analysis of an entire genome takes several days, which will give a reasonable idea
of the duration of variant calling. In case that a rather quick example is desired, a tiny test data set can be created from
the full data set. The script create_mini_data_set.sh serves this purpose (approx. runtime on a 24 core machine
1 1/4 h). This script has to be executed within the same directory as get_chicken_low_coverage.sh. The script
requires samtools, bwa and bgzip. All of those programs are available in the OVarFlow Conda Environment.

3.10. Example & Tutorial 39

https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6
https://www.ebi.ac.uk/ena/browser/view/PRJNA291174

OVarFlow, Release 2.0

3.10.2 OVarFlow execution

Now that a sample data set is available you can begin to set up data evaluation with OVarFlow. This example will make
use of the full data set, as downloaded with get_chicken_low_coverage.sh. Also to keep the installation of all
applications very easy, this example will make use of the Singularity container of OVarFlow, but the container will be
used in a manual fashion. By opening a shell within the container, the Snakefile can be started manually.

Step 1: Obtaining OVarFlow

First of all a reasonably current version of Singularity has to be installed on the respective system (3.5.1 has been tested,
most 3.x versions should do). With Singularity installed the OVarFlow container can be obtained from Docker Hub:

1 singularity build OVarFlow_<tag>.sif docker://ovarflow/release:<tag>

The <tag> has to be substituted with the most current version of OVarFlow.

Step 2: Creating a project directory

Create a project directory (OVarFlow_Chicken) under a reasonable path on your system and cd into this directory:

1 mkdir -p /your/path/OVarFlow_Chicken
2 cd /your/path/OVarFlow_Chicken

Within this project directory you have to create several subdirectories:

1 mkdir FASTQ_INPUT_DIR
2 mkdir REFERENCE_INPUT_DIR
3 mkdir OLD_GVCF_FILES

The fastq files from the test data set - remember where you downloaded those files - have to be available from the
FASTQ_INPUT_DIR directory. Therefore those files could be either copied (wastes disk space) or moved to the directory.
The creation of links is an alternative, that we will be using here. The same applies for the reference genome and
annotation:

1 for fastq in /path/to/test/data/Fastq/*fastq.gz
2 do
3 ln -s "${fastq}" FASTQ_INPUT_DIR/"${fastq##*/}"
4 done
5

6 ln -s /path/to/test/data/Reference/GCF_000002315.6_GRCg6a_genomic.fna.gz REFERENCE_INPUT_
→˓DIR/GCF_000002315.6_GRCg6a_genomic.fna.gz

7 ln -s /path/to/test/data/Reference/GCF_000002315.6_GRCg6a_genomic.gff.gz REFERENCE_INPUT_
→˓DIR/GCF_000002315.6_GRCg6a_genomic.gff.gz

OVarFlow relies on a naming convention, to recognize paired end sequencing files. Forward reads need the suffix _R1.
fastq.gz and reverse reads the suffix _R2.fastq.gz. SRR fastq files lack this specific suffix. Rename those files
accordingly and make sure that the links are not broken:

1 cd FASTQ_INPUT_DIR
2 mv SRR2131198_1.fastq.gz SRR2131198_R1.fastq.gz
3 mv SRR2131198_2.fastq.gz SRR2131198_R2.fastq.gz
4 mv SRR2131199_1.fastq.gz SRR2131199_R1.fastq.gz
5 mv SRR2131199_2.fastq.gz SRR2131199_R2.fastq.gz

(continues on next page)

40 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

(continued from previous page)

6 mv SRR2131201_1.fastq.gz SRR2131201_R1.fastq.gz
7 mv SRR2131201_2.fastq.gz SRR2131201_R2.fastq.gz
8 mv SRR2131202_1.fastq.gz SRR2131202_R1.fastq.gz
9 mv SRR2131202_2.fastq.gz SRR2131202_R2.fastq.gz

10 ls -l

Step 3: Adapt the CSV configuration file

With all needed files in place a CSV configuration file has to be created and placed into your data evaluation di-
rectory OVarFlow_Chicken. An example file to get you started is also available from the OVarFlow repository
(samples_and_read_groups.csv). Download this file and copy it to your project directory:

1 cp /path/to/file/samples_and_read_groups.csv /your/path/OVarFlow_Chicken/

This file has to be edited. You have to enter the fastq files that shall be processed, the reference that shall be used and
some read group information. To do this, the CSV file can be opened in a text editor of your liking, or a spread sheet
application like LibreOffice Calc. The latter is more convenient for inexperienced users, but make sure to save any
changes to the file again in CSV format! For this project the modified file should look like this:

Reference Sequence:,GCF_000002315.6_GRCg6a_genomic.fna.gz
Reference Annotation:,GCF_000002315.6_GRCg6a_genomic.gff.gz

Min sequence length:,2000

old gvcf to include:,

forward reads,reverse reads,ID,PL - plattform technology,CN - sequencing center,LB -␣
→˓library name,SM - uniq sample name
SRR2131198_R1.fastq.gz,SRR2131198_R2.fastq.gz,id_98,illumina,ENA,lib_98,SRR98
SRR2131199_R1.fastq.gz,SRR2131199_R2.fastq.gz,id_99,illumina,ENA,lib_99,SRR99
SRR2131201_R1.fastq.gz,SRR2131201_R2.fastq.gz,id_201,illumina,ENA,lib_201,SRR201
SRR2131202_R1.fastq.gz,SRR2131202_R2.fastq.gz,id_202,illumina,ENA,lib_202,SRR202

The Min sequence length has been chosen arbitrarily for this example. In your personal projects choose a value
that is reasonable to you. If you don’t want to exclude short contigs set the Min sequence length to 1.

The read group data are needed by some GATK tools. The SM - uniq sample name is probably most important
to you. This name will appear within the final annotated results file. Choose a name that identifies the respective
individual reasonably well and uniquely. Here a part of the SRR-number was chosen.

Step 4: Activate the OVarFlow Environment

Using the Singularity container saves us from the need to install Conda and setting up a Conda environment. Of course
if you lack Singularity you can also manually setup a Conda environment. A shell can easily be opened within the
Singularity container. Go to the directory where you issued singularity build thereby creating a .sif container
in that directory (see “Step 1”):

1 singularity shell --bind /path/to/OVarFlow_Chicken:/input OVarFlow_<tag>.sif
2 bash
3 cd /input

3.10. Example & Tutorial 41

OVarFlow, Release 2.0

The first command opens a shell within the container and also bind mounts the project directory within the container
under the path /input. The second command opens another bash shell within the container. By doing so the prompt
changes to the Conda base environment ((base) user@host:~$). The third command changes into to the project
directory. All project files are now available within the container under the path /input.

Step 5: Start the OVarFlow workflow

First of all you should perform a dry run of the workflow, to see if every rule will be executed correctly:

1 snakemake -np -s /snakemake/Snakefile

If this command succeeds you can start the real data evaluation. The dry run option (-n) has to be removed and a
reasonable number of threads to archive parallelization has to be given (--cores <number>):

1 snakemake -p --cores <number> -s /snakemake/Snakefile

Step 6: Lean back

If everything was set up correctly OVarFlow will now take care of the variant calling.

3.10.3 Resource usage

Within the above example a rather small project was processed. Still, when considering the provided input data, it
should be possible to get a rough idea of the resource requirements even for larger projects.

The reference genome GRCg6a total length (Mb): 1065.37

The input data

8 fastq files (for & rev): 45 Gb
low coverage: 10 - 15 fold
(30 fold is desirable in real projects)

The finished project directory size of all output data: 217 Gb

01_mapping: 55 Gb
02_sort_gatk: 55 Gb
03_mark_duplicates: 55 Gb
04_haplotypeCaller: 15 Gb
05_gather_samples: 15 Gb
06_combined_calls: 14 Gb
07_genotypeGVCFs: 1022 Mb
08_split_SNPs_Indels: 1035 Mb
09_hard_filtering: 1037 Mb
10_merged_filtered_VCF: 1024 Mb
11_filtered_removed_VCF: 986 Mb
12_annotated_variants: 1334 Mb

Total runtime to compute computations were performed on a 28 core machine with the following command:
snakemake -p --cores 26 -s ./Snakefile

42 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

total runtime: 37 h 36 min

As variant calling on eukaryotic genomes is a computationally demanding task, runtimes of days are the norm and can
even extend to weeks for larger projects. The actual time to finish for a real project will depend on several factors:

• the genome size of the organism

• the sequencing depth

• the number of individuals to analyze (e.g. the number of fastq files)

• the degree of variability of the organism (more variants mean longer runtimes)

• the given computing resources

For the above example the following hardware was used:

Architecture: x86_64
CPU(s): 28
Thread(s) per core: 1
Model name: Intel Core Processor (Broadwell)
CPU MHz: 2593.906
Hypervisor vendor: KVM
Virtualization type: full
Flags: . . . avx . . . (this is important)
Main memory: 64 Gb

3.11 Resource requirements

Variant calling is a computationally demanding task. There are three main hardware factors, that can create a bottleneck
in the data analysis, being (1) the number and speed of central processing units (CPUs) or cores to be precise, (2)
amount of main memory and (3) disk space. No single one of those components can be considered individually.
When increasing the number of CPUs memory size might become a new bottleneck. Of course the exact hardware
requirements depend on the size of your respective project and acceptable waiting time for the calculations to finish.
This is influenced by various factors:

• the genome size of the organism under study,

• the frequency of genomic variants,

• the sequencing depth and

• of course the number of individuals that shall be analyzed.

OVarFlow has been designed to be able to adopt to various project sizes and is able to scale with the provided compu-
tational resources. When ever possible various tasks are executed in parallel. Especially the GATK HaplotypeCaller,
which is probably the biggest single bottleneck, has been optimized for parallelization. The higher the number of
intervals, that are specified by the user, the higher the parallelization degree of the HaplotypeCaller.

Of course the total resource requirements depend on the resource usage of the single applications that are used in
OVarFlow. Therefore the resource usage of individual applications has been investigated closely, with a focus on CPU
and memory usage. The following sections will document the obtained results and applied optimizations.

3.11. Resource requirements 43

OVarFlow, Release 2.0

3.12 Benchmarking & Optimizations

Gallus gallus (chicken) has been used as a test organism. Not only is its reference genome GRCg6a of reasonable
quality but it’s also of moderate size, with approx. 1.07 Gbp. The exact file versions used are:

• Reference genome: GCF_000002315.6_GRCg6a_genomic.fna.gz

• Reference annotation: GCF_000002315.6_GRCg6a_genomic.gff.gz

Whole genome sequencing (wgs) data were obtained from the European Nucleotide Archive (ENA), which offers direct
download of fastq files. The study PRJNA306389 offers wgs data of varying sequencing depth. Two sequencing data
sets of different sequencing depths were chosen:

• Run: SRR3041137
Base count: 38,136,658,250, average coverage after mapping: 34-fold

• Run: SRR3041413
Base count: 18,799,906,500, average coverage after mapping: 16-fold

All calculations were performed on a virtual computer provided by the German Network for Bioinformatics Infrastruc-
ture (de.NBI) (de.NBI cloud location at the Justus-Liebig-University Gießen). The virtual machine offered 28 cores
and 64 GB main memory.

Exact CPU specification as provided by lscpu:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 28
On-line CPU(s) list: 0-27
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 28
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 61
Model name: Intel Core Processor (Broadwell)
Stepping: 2
CPU MHz: 2593.906
BogoMIPS: 5187.81
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 4096K
L3 cache: 16384K
NUMA node0 CPU(s): 0-27
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat␣
→˓pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp lm constant_tsc rep_good nopl␣
→˓xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic␣
→˓movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm␣
→˓3dnowprefetch invpcid_single pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm␣
→˓rdseed adx smap xsaveopt arat

The used software version as provided by gatk --version was:

44 Chapter 3. Motivation behind OVarFlow

https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6
https://www.ebi.ac.uk/ena/data/view/PRJNA306389
https://www.ebi.ac.uk/ena/data/view/SRR3041137
https://www.ebi.ac.uk/ena/data/view/SRR3041413
https://www.denbi.de/
https://www.uni-giessen.de/fbz/fb08/Inst/bioinformatik/bigi/de.NBI%20Cloud

OVarFlow, Release 2.0

The Genome Analysis Toolkit (GATK) v4.1.7.0
HTSJDK Version: 2.21.2
Picard Version: 2.21.9

The used Java version as provided by java -version was:

openjdk version "1.8.0_152-release"
OpenJDK Runtime Environment (build 1.8.0_152-release-1056-b12)
OpenJDK 64-Bit Server VM (build 25.152-b12, mixed mode)

The used version of bwa as provided by bwa was:

Program: bwa (alignment via Burrows-Wheeler transformation)
Version: 0.7.17-r1188

The used version of samtools as provided by samtools --version was:

samtools 1.10
Using htslib 1.10.2
Copyright (C) 2019 Genome Research Ltd.

Resource usage of a specific process was monitored every 3 seconds via the command:

ps -p <pid of process> -o rss,%mem,%cpu | tail -1

Further code details can be found within the repository of OVarFlow. No additional demanding computations were
performed during the recording of the resource usage.

3.12.1 Java Garbage Collection

The CPU usage of some GATK tools is heavily affected by the Java Garbage Collection (GC). The Java HotSpot VM
offers three different garbage collectors. The parallel collector is the default on larger hardware (Java 8 documenta-
tion), as used in variant calling. As the name implies the parallel collector uses multithreading to accelerate garbage
collection. The number of threads used, depends on the available amount of threads of the respective machine. The
documentation describes:

On a machine with N hardware threads where N is greater than 8, the parallel collector uses a fixed fraction
of N as the number of garbage collector threads. The fraction is approximately 5/8 for large values of N.
At values of N below 8, the number used is N. On selected platforms, the fraction drops to 5/16.

This is important, as the actual number of used GC threads can have an enormous impact on the CPU time consumed
by some GATK tools. The actual amount of used GC threads can be determined via the command:

java -XX:+PrintFlagsFinal | grep ParallelGCThreads

On various different machines (core count by lscpu) the following values were obtained:

CPU Cores GC Threads
8 8
28 20
64 43
160 103

3.12. Benchmarking & Optimizations 45

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref27
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref27
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html

OVarFlow, Release 2.0

To determine the effect of GC on GATK, several GATK commands were executed with different GC settings (1, 2,
4, 6, 8, 12, 16 and 20 GC threads) and their consumed CPU time (wall time and user time) as well as maximum
memory consumption (resident set size - RSS) was measured via GNU time (1.8, version 1.7 includes a bug resulting
in four times to high values for RSS). Each measurement was repeated three times and the resulting mean values were
plotted. Depending on the computation times of the respective GATK tool, different data sets were used (SRR3041116,
SRR3041413 and SRR30411137). For GATK HaplotypeCaller only an interval was used. This was done to reduce
waiting times. Of course for every single analysis the same input data were used. Finally only relative changes within
a single command due to Java GC are of interest here, not absolute changes due to different file sizes. The provided
commands specify the used data set.

Effect on GATK SortSam

The following command was used to determine the effects of Java GC on GATK SortSam:

1 FILE=SRR3041137
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options -XX:ParallelGCThreads=${GC} SortSam \
4 -I 01_mapping/${FILE}.bam \
5 -SO coordinate \
6 -O ${TMP_DIR}/${FILE}.bam \
7 --TMP_DIR ./GATK_tmp_dir/ 2> ${TMP_DIR}/02_sort_gatk_${FILE}.log

When it comes to wall time sorting of bam files is barely influenced by the number of Java GC threads. Considering
the multithreaded load on several cores, as is done by the user measurement, the consumed CPU time rises approx.
proportional with the number of threads. There is no obvious influence of the Java GC on memory consumption. For
GATK SortSam one or two Java GC threads give the best performance.

Effect on GATK MarkDuplicates

The following command was used to determine the effects of Java GC on GATK MarkDuplicates:

1 FILE=SRR3041413
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options -XX:ParallelGCThreads=${GC} MarkDuplicates \
4 -I 02_sort_gatk/${FILE}.bam \
5 -O ${TMP_DIR}/03_mark_duplicates_${FILE}.bam \

(continues on next page)

46 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

(continued from previous page)

6 -M ${TMP_DIR}/03_mark_duplicates_${FILE}.txt \
7 -MAX_FILE_HANDLES 300 \
8 --TMP_DIR ./GATK_tmp_dir/ 2> ${TMP_DIR}/03_mark_duplicates_${FILE}.log

Default settings of 20 GC threads cause the highest CPU loads, both for wall and user time. This is especially important
for the total consumed CPU time (user measurement), which is more than seven times higher for 20 GC threads as
compared to 1 or 2 GC threads. Also memory-wise a preference for lower thread counts might be favorable. Considering
all three measurements, the optimum for GATK MarkDuplicates seems to be given with two Java GC threads.

Effect on GATK HaplotypeCaller

The following command was used to determine the effects of Java GC on GATK HaplotypeCaller:

1 FILE=SRR3041413
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options -XX:ParallelGCThreads=${GC} HaplotypeCaller \
4 -ERC GVCF -I 03_mark_duplicates/${FILE}.bam \
5 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
6 -O ${TMP_DIR}/${FILE}_tmp.gvcf.gz \
7 -L "NC_006093.5" 2> ${TMP_DIR}/${FILE}_tmp.log

3.12. Benchmarking & Optimizations 47

OVarFlow, Release 2.0

The amount of consumed CPU time is considerably less dependent on the GC settings than it has been the case for
GATK SortSam and MarkDuplicates. The absolute timescale only shows statistical fluctuations. Therefore CPU load
of HaplotypeCaller is barely affected by Java GC settings. From the given measurements, maximum memory usage
(resident set size) appears to be favourable at one or two Java GC threads.

As the HaplotyeCaller is the application with the longest runtimes in OVarFlow, and peak CPU loads of this application
were noticed at the beginning of program execution, its CPU and memory usage was investigated more closely. Over
a period of 15 min CPU and RSS were measured every second using ps -p <pid> -o rss,%mem,%cpu and graphs
were plotted for various Java GC settings.

1 FILE=SRR3041137
2 gatk --java-options -XX:ParallelGCThreads=${GC} HaplotypeCaller \
3 -ERC GVCF -I 03_mark_duplicates/${FILE}.bam \
4 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
5 -O ${MON_DIR}/${FILE}.gvcf.gz \
6 -L "NC_006093.5" 2> ${MON_DIR}/${FILE}.log &

Graphs of CPU usage are congruent for all Java GC settings. The peak load at the beginning makes use of six threads
(600 % CPU load) and is totally independent of Java GC thread count. Such load peaks were also observed for other
GATK tools (see the section concerning file size or sequencing depth, respectively). When it comes to memory, two
GC threads caused a higher usage. Still this observation only applies to the first 15 min (see previous graphics).

Effect on GATK GatherVcfs

The following command was used to determine the effects of Java GC on GATK GatherVcfs:

1 FILE=SRR3041413
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options -XX:ParallelGCThreads=${GC} GatherVcfs \
4 -O ${DIR}/05_gathered_samples_${FILE}.gvcf.gz \
5 -I 04_haplotypeCaller/${FILE}/interval_1.g.vcf.gz \
6 -I 04_haplotypeCaller/${FILE}/interval_2.g.vcf.gz \
7 -I 04_haplotypeCaller/${FILE}/interval_3.g.vcf.gz \

(continues on next page)

48 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

(continued from previous page)

8 -I 04_haplotypeCaller/${FILE}/interval_4.g.vcf.gz \
9 --TMP_DIR ./GATK_tmp_dir 2> ${MON_DIR}/05_gathered_samples_${FILE}.log

GatherVcfs is not noticeably influenced by the number Java GC threads. Only wall time of the first measurement is
considerably higher (approx. 2 min). This is due to page caching of the processed data, which are kept in memory after
they are fist accessed. For the first measurement data have to be obtained from permanent memory first and are thereby
stored in memory for the next measurements. GatherVcfs was configured to use two Java GC threads.

Deprecated: Effect on GATK CombineGVCFs

CombineGVCFs was substituted with GatherVcfs, which is more efficient. This section is only for reference purposes.

1 FILE=SRR3041413
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options -XX:ParallelGCThreads=${GC} CombineGVCFs \
4 -O ${TMP_DIR}/${FILE}_tmp.gvcf.gz \
5 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
6 -V 04_haplotypeCaller/${FILE}/interval_2.gvcf.gz \
7 -V 04_haplotypeCaller/${FILE}/interval_4.gvcf.gz \
8 -V 04_haplotypeCaller/${FILE}/interval_1.gvcf.gz \
9 -V 04_haplotypeCaller/${FILE}/interval_3.gvcf.gz 2> ${TMP_DIR}/${FILE}_tmp.log

3.12. Benchmarking & Optimizations 49

OVarFlow, Release 2.0

For GATK CombineGVCFs the impact of the number of Java GC threads only show a moderate effect, which is even
covered by statistic variance between the measurements. Wall time is only slight light affected, were the number of
negative outliers might be reduced for lower thread counts. The situation is a bit more clear for the user time, where
lower thread counts are clearly favourable, but only by a few percent of the total run time. For memory usage the range
is much wider (approx. 3 to 6 Gb). A constant that could be seen also in other measurements (not show) was a low and
less varying memory consumption when using 2 Java GC threads. Using two Java GC threads seem to be favorable
for GATK CombineGVCFs.

OVarFlow and Java GC

Interestingly not every GATK tool behaves identical. Still if there is a preference, it has always been observed in
favour of low Java GC thread numbers. Some tools, like SortSam, only show a clear tendency in one of the observed
parameters (in this case total CPU time). For CombineGVCFs on the other hand the tendency is not as pronounced as
for SortSam or MarkDuplicates. Still there is a preference for low Java GC thread numbers.

As can be seen from the above measurements, choosing the optimal number of Java GC threads can have an enor-
mous effect on resource usage. The obtained results were incorporated into OVarFlow, with the following settings for
ParallelGCThreads:

• GATK SortSam: 2

• GATK MarkDuplicates: 2

• GATK HaplotypeCaller: 2

• GATK GatherVcfs: 2

• GATK CombineGVCFs: 2

• other GATK applications: 4

This is consistent with a block post in the GATK forum (date of post Oct 2017; posted during transition from GATK 3
to 4, seemingly valid for both versions):

You would be better off setting it [Java GC thread count] to 2-4 threads. Performance gets worse beyond
that typically from what the developers have seen.

50 Chapter 3. Motivation behind OVarFlow

https://gatkforums.broadinstitute.org/gatk/discussion/comment/42844/#Comment_42844

OVarFlow, Release 2.0

3.12.2 Java Heap Space (-Xmx)

Global settings of the Java virtual machine (JVM) can cause major performance impacts on the respective GATK tool.
In this regard Java Garbage Collection (GC) is only one aspect. Settings of the Java heap size cause a major influence
on memory consumption of the JVM. Here two values affect heap size, as can be shown via java -X:

...
-Xms<size> set initial Java heap size
-Xmx<size> set maximum Java heap size
...

When starting the JVM -Xms is not set (and is not as important), but the values of -Xmx will be set depending on the
given amount of memory the respective machine has to offer. The values of a certain machine can be determined via
java -XshowSettings:vm 2>&1 | head. On various different machines the following values were obtained:

Memory Max. Heap Size (Estimated)
16 Gb 3.48 Gb
64 Gb 13.98 Gb
256 Gb 26.67 Gb
512 Gb 26.67 Gb
1 Tb 26.67 Gb

Again just like with the number of Java GC threads, there is a situation were the default behavior is dependent upon the
respective machine parameters. Finally heap size can have considerable effects on runtimes and obviously even more
on memory usage. Therefore those GATK tools that work in parallel on several files were also monitored for various
predefined heap sizes (1, 2, 4, 6, 8, 12, 16, 24, 32 and 48 Gb). Besides performance impacts too small values for the
heap size will result in the lack of memory and can result in an java.lang.OutOfMemoryError.

Effect on GATK SortSam

1 FILE=SRR3041137; GC=2
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options "-Xmx${XMX}G -XX:ParallelGCThreads=${GC}" SortSam \
4 -I 01_mapping/${FILE}.bam \
5 -SO coordinate \
6 -O ${DIR}/02_sort_gatk_${FILE}.bam \
7 --TMP_DIR ./GATK_tmp_dir/ 2> ${DIR}/02_sort_gatk_${FILE}.log

3.12. Benchmarking & Optimizations 51

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html

OVarFlow, Release 2.0

CPU usage is negatively effected by low heap sizes, reaching a sustainable minimum at approx. 12 Gb. Generally
memory usage raises with higher values for the Xmx setting, but with a drop at 8 Gb. The gray line in the RSS plot
indicates parity between measured RSS and set Xmx values (meaning RSS = Xmx). It is obvious that CPU and memory
usage cannot be minimized at the same time. Still simultaneous optimization of both parameters is possible with Xmx
settings of 8 or 12 Gb. OVarFlow was set at 10 Gb for SortSam.

On a side note: setting identical values for Xms and Xmx did not result in higher memory usage. Even with higher
Xms values memory will be initialized with a 0-page. But memory is only counted as RSS, when it is actually accessed
and written to.

Effect on GATK MarkDuplicates

1 FILE=SRR3041413; GC=2
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options "-Xmx${XMX}G -XX:ParallelGCThreads=${GC}" MarkDuplicates \
4 -I 02_sort_gatk/${FILE}.bam \
5 -O ${DIR}/03_mark_duplicates_${FILE}.bam \
6 -M ${DIR}/03_mark_duplicates_${FILE}.txt \
7 -MAX_FILE_HANDLES 300 \
8 --TMP_DIR ./GATK_tmp_dir/ 2> ${DIR}/03_mark_duplicates_${FILE}.log

From 1 to 24 Gb Xmx settings, CPU usage is not noticeably affected. Only 32 and 48 Gb were moderately more

52 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

demanding. Memory usage on the other hand raises nearly linear with Xmx settings. Lower heap size are clearly
preferable for MarkDuplicates and were set to 2 Gb.

Effect on GATK HaplotypeCaller

1 FILE=SRR3041137; GC=2
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options "-Xmx${XMX}G -XX:ParallelGCThreads=${GC}" HaplotypeCaller \
4 -ERC GVCF -I 03_mark_duplicates/${FILE}.bam \
5 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
6 -O ${DIR}/${FILE}_tmp.gvcf.gz \
7 -L "NC_006093.5" 2> ${DIR}/${FILE}_tmp.log

CPU usage of HaplotypeCaller is not effected by different Java heap sizes. Again there is a near linear relation between
Xmx settings and actual memory usage, but starting from 4 Gb memory usage stays way below the allowed heap sizes.
HaplotypeCaller was set to use 2 Gb memory for the Java heap size.

Effect on GATK GatherVcfs

1 FILE=SRR3041137; GC=2
2 /usr/bin/time -o ${LOG_FILE} --append -v\
3 gatk --java-options "-Xmx${XMX}G -XX:ParallelGCThreads=${GC} GatherVcfs \
4 -O ${DIR}/05_gathered_samples_${FILE}.gvcf.gz \
5 -I 04_haplotypeCaller/${FILE}/interval_1.g.vcf.gz \
6 -I 04_haplotypeCaller/${FILE}/interval_2.g.vcf.gz \
7 -I 04_haplotypeCaller/${FILE}/interval_3.g.vcf.gz \
8 -I 04_haplotypeCaller/${FILE}/interval_4.g.vcf.gz \
9 --TMP_DIR ./GATK_tmp_dir 2> ${DIR}/05_gathered_samples_${FILE}.log

3.12. Benchmarking & Optimizations 53

OVarFlow, Release 2.0

GatherVcfs is not significantly influenced by Java heap size settings. Only wall time of the first measurement is consid-
erably higher. This is due to page caching of the processed data, which are kept in memory after they are first accessed.
Also overall resource usage is very moderate and a significant advantage over CombineGVCFs, which was previously
employed for this step. To allow for some resource tolerance heap size was set to 2 Gb.

Deprecated: Effect on GATK CombineGVCFs

CombineGVCFs was replaced by GatherVcfs.

1 FILE=SRR3041137; GC=2
2 /usr/bin/time -o ${LOG_FILE} --append -v \
3 gatk --java-options "-Xmx${XMX}G -XX:ParallelGCThreads=${GC}" CombineGVCFs \
4 -O ${DIR}/05_gathered_samples_${FILE}.gvcf.gz \
5 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
6 -V 04_haplotypeCaller/${FILE}/interval_2.gvcf.gz \
7 -V 04_haplotypeCaller/${FILE}/interval_4.gvcf.gz \
8 -V 04_haplotypeCaller/${FILE}/interval_1.gvcf.gz \
9 -V 04_haplotypeCaller/${FILE}/interval_3.gvcf.gz 2> ${DIR}/05_gathered_samples_${FILE}

→˓.log

If there is a clear effect on CPU usage of the allowed heap size on CombineGVCFs it is mostly hidden under statistic
variance. On the other hand effects on RSS values are rising from 1 to 12 Gb, where a maximum is reached. Java heap

54 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

size of CombineGVCFs was set to 2 Gb.

OVarFlow and Java heap size

Overall CPU usage is only barely affected by different heap sizes. Only SortSam is an exception, were low heap sizes
will significantly increase runtime. As expected, lower heap size settings (Xmx) are favorable to save some memory
(RSS). Still some interesting drops in memory usage could be observed for some Xmx values.

To maximize performance while minimizing resource usage of OVarFlow the following values for the heap size
(-Xmx<n>G were set within the Snakefile:

• GATK SortSam: 10 Gb

• GATK MarkDuplicates: 2 Gb

• GATK HaplotypeCaller: 2 Gb

• GATK GatherVcfs: 2 Gb

• GATK CombineGVCFs: 2 Gb

By manually specification of a Java heap size, memory usage of the GATK tools could clearly be improved over the
default values that applied to a machine with 64 Gb main memory.

3.12.3 File size / sequencing depth

The previous sections investigated the effects of different Java GC thread numbers (-XX:ParallelGCThreads) and
various Java heap sizes (-Xmx) on the resource usage (CPU and memory) of several GATK tools. This served the
identification of optimized Java GC settings and heap sizes. Optimized Java GC settings were then applied to OVarFlow.

This section now focuses on:

• Resource usage over the complete run time of the single GATK tools with optimized Java GC and heap size
settings.

• The influence of sequencing depth and file size on the resource usage.

Therefore profiles of CPU and memory usage (RSS) were recorded for different input data. In doing so, this section
also provides clues about the resources that are required by the single GATK tools and ultimately the entire workflow.

Again the previously utilized data sets were used to evaluate resource usage:

SRR3041137 34 x average coverage after mapping, 18.7 Gb, 2 x 125 bp

SRR3041413 16 x average coverage after mapping, 10.8 Gb, 2 x 150 bp

Those data sets were suitable to cover common different properties of the sequencing files, that could cause a peak load
on CPU or memory. To account for statistical deviations in resource usage, every data set was evaluated twice (solid
and dashed plots). Resource usage was monitored every three seconds using ps -p <pid> -o rss,%mem,%cpu. The
shell script used for monitoring can be found within the repository of OVarFlow alongside the R script used to generate
the final graphs.

3.12. Benchmarking & Optimizations 55

OVarFlow, Release 2.0

bwa mem | samtools

The principle command use to evaluate the respective data set is given below:

1 File=<SRR3041137|SRR3041413>
2 bwa mem -M -t 6 \
3 -R "@RG\tID:id_${FILE}\tPL:illumina\tPU:dummy\tCN:SRR\tLB:lib_${FILE}\tSM:${FILE}" \
4 processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
5 FASTQ_INPUT_DIR/${FILE}_R1.fastq.gz FASTQ_INPUT_DIR/${FILE}_R2.fastq.gz \
6 2> ${MON_DIR}/${FILE}_stderr_bwa.log | \
7 samtools view -b /dev/fd/0 -o ${MON_DIR}/${FILE}.bam \
8 2> ${MON_DIR}/${FILE}_stdout_samtools.log

For the bwa mem | sortsam pipeline only one measurement is shown. Graphs of the second measurement were
congruent and could not be distinguished from the first measurement. Resource usage of the two piped tools (bwa mem
and samtools view) was recorded separately.

Resource usage of the compression from sam to bam format by samtools view can be neglected compared to bwa
mem. As bwa mem was configured to use 6 threads, the CPU load is very consistent at 600 %. Interestingly memory
usage of bwa mem is increasing linearly over the whole runtime of the process. RSS maxes out at 3 Gb for the larger
data set and only reaches 2.5 Gb for the smaller one. To account for larger genomes and even higher coverage data sets,
the maximum memory usage was set to 4 Gb within the Snakefile.

GATK SortSam

1 GC=2; Xmx=10; File=<SRR3041137|SRR3041413>
2 gatk --java-options "-Xmx${Xmx}G -XX:ParallelGCThreads=${GC}" SortSam \
3 -I 01_mapping/${FILE}.bam \
4 -SO coordinate \
5 -O ${MON_DIR}/${FILE}.bam \
6 --TMP_DIR ./GATK_tmp_dir/ 2> ${MON_DIR}/02_sort_gatk_${FILE}.log &

56 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

The dashed graph for SRR3041413 shows a steep decline, whereas the other graphs show a sudden end. This is an
artifact of the measurement and not a systematic difference. Single measurements were recorded every three seconds.
Most of the time the respective command just finished within this three second interval, allowing for no additional
measurement. Sometimes a measurement was taken just while a process was freeing resource, recording this decline
in resource usage.

Total CPU and memory usage are barely altered by sequencing depth or file size. Memory consumption reaches a
plateau at approx. 4 Gb. There is a sharp peak at the beginning of the runtime for the CPU usage, dropping quickly to
slightly above 100 % (meaning a little over a single thread is used). The clearest effect is on total runtimes. The larger
file needs longer to process.

Aside from the -Xmx parameter, the amount of memory that is used by SortSam can be modified by setting the op-
tion --MAX_RECORDS_IN_RAM, which will inversely increase the number of file handles. The tool documentation of
SortSam states:

When writing files that need to be sorted, this will specify the number of records stored in RAM before
spilling to disk. Increasing this number reduces the number of file handles needed to sort the file, and
increases the amount of RAM needed.

GATK MarkDuplicates

1 GC=2; Xmx=2; File=<SRR3041137|SRR3041413>
2 gatk --java-options "-Xmx${Xmx}G -XX:ParallelGCThreads=${GC}" MarkDuplicates \
3 -I 02_sort_gatk/${FILE}.bam \
4 -O ${MON_DIR}/03_mark_duplicates_${FILE}.bam \
5 -M ${MON_DIR}/03_mark_duplicates_${FILE}.txt \
6 -MAX_FILE_HANDLES 300 \
7 --TMP_DIR ./GATK_tmp_dir/ 2> ${MON_DIR}/03_mark_duplicates_${FILE}.log &

3.12. Benchmarking & Optimizations 57

https://gatk.broadinstitute.org/hc/en-us/articles/360042914571-SortSam-Picard-
https://gatk.broadinstitute.org/hc/en-us/articles/360042914571-SortSam-Picard-

OVarFlow, Release 2.0

Both data sets show similar resource usage. Memory usage maxes out at a little over 2 Gb, where a plateau is reached.
Also CPU usage is similar with a peak load at the beginning of the process and a continuous usage between 100 to 150
% during the rest of the runtime.

The tool documentation of MarkDuplicates mentions two parameters to modify memory usage,
--MAX_RECORDS_IN_RAM and --SORTING_COLLECTION_SIZE_RATIO.

GATK HaplotypeCaller

1 GC=2; Xmx=2; File=<SRR3041137|SRR3041413>
2 gatk --java-options "-Xmx${Xmx}G -XX:ParallelGCThreads=${GC}" HaplotypeCaller \
3 -ERC GVCF \
4 -I 03_mark_duplicates/${FILE}.bam \
5 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
6 -O ${MON_DIR}/${FILE}.gvcf.gz \
7 -L "NC_006093.5" 2> ${MON_DIR}/${FILE}.log &

Again resource usage of HaplotypeCaller is very similar for different file sizes or sequencing depth, respectively. Both
reach a plateau around 2.5 Gb memory usage. CPU loads have a very pronounced peak load quickly declining to
approx. 135 % CPU load for the rest of the runtime.

HaplotypeCaller possesses the longest runtimes of the used GATK tools. In the above graphics a smaller contig
(NC_006093.5; 36,374,701 bp) was evalutated to reduce runtime. To identify any particularities during longer run-
times, the application was also observed for a longer period. Therefore an interval comprising the two larges contigs

58 Chapter 3. Motivation behind OVarFlow

https://gatk.broadinstitute.org/hc/en-us/articles/360042477492-MarkDuplicates-Picard-

OVarFlow, Release 2.0

(NC_006088.5, 197,608,386 bp & NC_006089.5, 149,682,049 bp; sample SRR3041137) was also evaluated.

CPU usage stays at approx. 135 % during the majority of the runtime. Also resident set size keeps its plateau around
2.5 Gb of memory usage, only with minor fluctuations.

GATK CombineGVCFs

Combining the interval files was migrated to use GatherVcfs, which is considerably more efficient. This section is kept
for reference purposes. Also CombineGVCFs is still used to consolidate all individuals into a single cohort. Due to its
very brief runtime GatherVcfs was not accessed further.

1 GC=2; Xmx=2; File=<SRR3041137|SRR3041413>
2 gatk --java-options "-Xmx${Xmx}G -XX:ParallelGCThreads=${GC}" CombineGVCFs \
3 -O ${MON_DIR}/${FILE}.gvcf.gz \
4 -R processed_reference/GCF_000002315.6_GRCg6a_genomic.fa.gz \
5 -V 04_haplotypeCaller/${FILE}/interval_2.gvcf.gz \
6 -V 04_haplotypeCaller/${FILE}/interval_4.gvcf.gz \
7 -V 04_haplotypeCaller/${FILE}/interval_1.gvcf.gz \
8 -V 04_haplotypeCaller/${FILE}/interval_3.gvcf.gz 2> ${MON_DIR}/05_gathered_samples_$

→˓{FILE}.log &

CPU and memory usage are similar for both files. Only runtimes are elongated for the larger data set. Interestingly
file size and initial sequencing depth are not proportional for the input data (gvcf files). For the data set possessing the
higher coverage HaplotypeCaller created a smaller gvcf file set (SRR3041137: 34 x coverage, 3.7 Gb) as for the data

3.12. Benchmarking & Optimizations 59

OVarFlow, Release 2.0

with the lower coverage (SRR3041413: 16 x coverage, 4.8 Gb). Runtime of the process is clearly influenced by the
total file size of the input data and not the initial sequencing depth.

Conclusions

From the above measurements some conclusions can be drawn concerning:

File size / sequencing depth There is a clear correlation between file size and the runtime of the respective process.
The larger the file the longer it takes to evaluate it. Within the workflow there is also a clear correlation between
sequencing depth and file size up to data processing by HaplotypeCaller. Obviously higher sequencing depth
means larger bam files. HaplotypeCaller on the other hand converts the input data (bam files) into a totally
new format (gvcf files), where higher sequencing depth does not necessarily mean more detected variants. So
generally runtimes are influenced by the file size of the input data, which is connected to the size of bam files but
not necessarily to gvcf file size.

Similarities and differences in resource usage of the tools One striking similarity of all observed GATK tools is
their peak CPU load at the beginning of each process, quickly dropping again in the first few minutes. Only
the peak height, meaning absolute CPU usage, is different. The highest peaks were observed for Haplotype-
Caller with approx. 600 % CPU load (meaning 6 parallel threads). On the lower end MarkDuplicates was only
using up to 250 % CPU (2 1/2 threads). Over the remaining runtime no tools showed a CPU usage of more than
150 %.

Memory usage on the other hand tends to reach a plateau, which is not necessarily identical to the limits specified
by the Java heap size.

Maximum resource usage Monitoring CPU and memory usage over the complete runtime of a process helps to iden-
tify bottlenecks and the most demanding tools in both areas. There are no major differences in CPU usage. Beside
the peak load each observed GATK tool uses 100 - 150 % of the CPU (1 to 1 1/2 threads), with CombineGVCFs
being very close to a single thread (approx. 103 %). This was considered in the Snakefile by specifying two
threads for all of the above tools besides CombineGVCFs, which was kept at the default of one thread.

In any case maximum memory usage is more important, than maximum CPU usage. In case that CPU becomes a
bottleneck runtimes of the total data evaluation will simply increase. This might be annoying as processes might
get paused but won’t do further harm. Memory usage on the other side is a different issue. Memory usage cannot
be postponed. On a system that runs out of memory the out of memory kill (OOM killer) will be invoked and
select a task to kill to free up memory for the sake of the total system.

Therefore additional precautions were taken, to prevent OVarFlow from running out of memory. The maximum
RSS values of the respective tool are decisive for planing of resource usage. Within the OVarFlows Snakefile
the resources keyword is used to specify the maximum amount of memory that was observed within the above
measurements. Thereby the amount of memory of the system OVarFlow is executed upon, can be specified if
needed (keep in mind, the resources keyword will not enforce those limits). In this case a full command line
would look like this:

snakemake -np --cores <threads> -s /path/to/Snakefile --resources mem_gb=<amount of␣
→˓system memory>

The following resource requirements were set for the respective tool (resources and threads keyword in the Snake-
file), while always adjusting upwards to the next full gigabyte value:

60 Chapter 3. Motivation behind OVarFlow

https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html#oom-killer
https://snakemake.readthedocs.io/en/v5.18.0/snakefiles/rules.html#resources

OVarFlow, Release 2.0

Tool Java settings Snakemake keyword
GC heap size resources (mem_gb) threads

bwa|samtools 4 Gb 6
SortSam 2 10 Gb 5 Gb 2
MarkDuplicates 2 2 Gb 3 Gb 2
HaplotypeCaller 2 2 Gb 3 Gb 2
GatherVcfs 2 2 Gb 2 Gb 1
CombineGVCFs 2 2 Gb 2 Gb 1

The above thread values are not identical to the Java GC thread settings nor to the Java heap size. These
values only reflect the approximate resource usage of the respective tool and are meant for resource man-
agement or planning by Snakemake, respectively.

3.12.4 Entire Workflow

Previously only single applications were benchmarked and optimized. Ultimately it’s the resource usage of the entire
workflow, that’s of concern. Thus the entire OVarFlow workflow was monitored. Again CPU as well as memory usage
were observed. This served several purposes:

1. Demonstrating the effect of the applied Java options on the entire workflow, thereby validating the effect.

2. Identification of excessive resource utilization during the workflow, that might still be left.

3. Giving an example of what can be done with a specific given hardware and how to maximize its utilization by
adjusting some Snakemake options without introducing new overloads.

Again chicken (Gallus gallus) served as a reference organism, with the reference genome and annotation given in the
benchmarking introduction. Six different runs from the study PRJEB12944 were used as sample data, with average
coverages between 24 and 28 (ERR1303580, ERR1303581, ERR1303584, ERR1303585, ERR1303586, RR1303587).

Benchmarking was performed on a single cluster node (SGE), whose resources were exclusively reserved for OVarFlow.
Exclusive reservation was achieved by requesting as many slots as the hardware provided parallel threads (in this case
40). The following hardware specifications where given:

• memory (file: /proc/meminfo):

MemTotal: 264105108 kB (= 251.9 Gb)
SwapTotal: 124999676 kB (= 119.2 Gb)

• CPU (command: lscpu):

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 2
Core(s) per socket: 10
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 62
Model name: Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Stepping: 4

(continues on next page)

3.12. Benchmarking & Optimizations 61

https://www.ebi.ac.uk/ena/data/view/PRJEB12944
https://www.ebi.ac.uk/ena/data/view/ERR1303580
https://www.ebi.ac.uk/ena/data/view/ERR1303581
https://www.ebi.ac.uk/ena/data/view/ERR1303584
https://www.ebi.ac.uk/ena/data/view/ERR1303585
https://www.ebi.ac.uk/ena/data/view/ERR1303586
https://www.ebi.ac.uk/ena/data/view/ERR1303587

OVarFlow, Release 2.0

(continued from previous page)

CPU MHz: 2042.538
CPU max MHz: 3300.0000
CPU min MHz: 1200.0000
BogoMIPS: 4989.96
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 25600K
NUMA node0 CPU(s): 0-9,20-29
NUMA node1 CPU(s): 10-19,30-39
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca␣
→˓cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb␣
→˓rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc␣
→˓cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16␣
→˓xtpr pdcm pcid dca sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx␣
→˓f16c rdrand lahf_lm cpuid_fault epb pti intel_ppin ssbd ibrs ibpb stibp tpr_
→˓shadow vnmi flexpriority ept vpid fsgsbase smep erms xsaveopt dtherm ida arat pln␣
→˓pts md_clear flush_l1d

Resource usage of the entire machine was recorded every 30 second throughout the workflow using two shell com-
mands:

mpstat 30 > mpstat_statistics &
sar -r 30 > sar_statistics &

Processing of measurements was done using some shell commands including sed and awk to convert the file format
into something more suitable for plotting CPU and memory usage with R. Again the respective scripts are deposited in
the OVarFlow repository.

Workflow without optimization

To obtain a baseline measurement the entire workflow was executed without any Java optimizations. Therefore the
settings for the number of parallel GC threads as well as the amount of memory available for the heap space where au-
tomatically chosen by the JVM. CPU utilization was already considered in the Snakefile through the threads keyword,
as stated in the following table:

Tool Rule Threads
bwa / samtools mapping 6
SortSam sort_sam_gatk 2
MarkDuplicates mark_duplicates 2
HaplotypeCaller haplotypeCaller 2
CombineGVCFs gather_intervals 1 (default)
default for other tools 1

62 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

System resources, both CPU and memory, show a high degree of utilization. Overall there are three phases of the
workflow, that can be distinguished. The first phase (approx. to 7 h) is about mapping of the reads. Here high CPU
utilization is desirable, while memory usage is rather low. In the second phase various GATK applications (SortSam,
MarkDuplicates, HaplotypeCaller and CombineGVCFs) are executed in parallel. Here CPU utilization shows consid-
erably more variability while memory usage peaks at around 225 Gb. In the third phase (after approx. 33 h) all tasks
that can be executed in parallel are finished, and both CPU and memory utilization is rather moderate.

Workflow with Java GC optimization

The Java VM was tweaked by limiting the number of GC threads to two (-XX:ParallelGCThreads=2) for SortSam,
MarkDuplicates, HaplotypeCaller and CombineGVCFs. Other GATK tools were limit to four GC threads. Finally the
Snakefile was invoked limiting parallel threads to 38 (snakemake -p --cores 38).

3.12. Benchmarking & Optimizations 63

OVarFlow, Release 2.0

As expected memory usage is not altered by the Java GC modification. The effect on CPU usage is very noticeable,
being more consistent at the beginning of the second phase. Also CPU usage doesn’t peak as high as previously. This
is related to the execution of SortSam and MarkDuplicates. CPU utilization of both applications was considerably
affected by the GC thread count (see Java Garbage Collection section). HaplotypeCaller and CombineGVCFs were
considerably less affected by Java GC, as is reflected by the barely altered plateau at approx. 60 - 70 % CPU utilization.
This moderate degree of CPU utilization is due to the fact, that Snakemake only allows for the specification of integer
thread numbers, while HaplotypeCaller uses approx. 130 % of the CPU. 70 % of the second CPU core remains unused
when specifying 2 threads for the HaplotypeCaller.

Workflow with Java heap optimization

The second regulating screw to the JVM is heap size (-Xmx) with some considerable effects on memory consumption.
Two different settings were evaluated.

Workflow with Java -Xmx10G

At first equal heap sizes of 10 Gb were tested and applied to the four GATK tools SortSam, MarkDuplicates, Haplo-
typeCaller and CombineGVCFs. This was achieved by setting an environment variable:

export _JAVA_OPTIONS=-Xmx10G

CPU usage is not significantly affected. But memory consumption in the second phase of the workflow is drastically
lowered. Previously memory consumption reached a plateau at approx. 225 Gb, which could be lowered to approx.
100 Gb.

64 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

Workflow with optimized heap sizes

To further optimize memory consumption of OVarFlow, Java heap sizes were every more granularly tuned to the single
GATK tools:

• GATK SortSam

export _JAVA_OPTIONS=-Xmx10G

• GATK MarkDuplicates, HaplotypeCaller and CombineGVCFs

export _JAVA_OPTIONS=-Xmx2G

In doing so memory consumption of the second phase could further be reduced considerably. Memory utilization
doesn’t even exceed 50 Gb, which is another reduction by approx. 50 % as compared to only using -Xmx10G. Despite
this drastic reduction CPU usage was not negatively affected by those changes.

3.12.5 Maximizing CPU utilization

As was noticed in previous benchmarkings of the entire workflow, in the HaplotypeCaller phase CPU utilization reached
a plateau at approx. 60 - 70 % of all available resources. This can be explained by the fact, that each individual
HaplotypeCaller process uses approx. 135 % of the CPU (i.e. 1.35 cores or threads are used). In the Snakefile on the
other side only integer values for thread usage are possible. Finally, even though only 1.35 threads are used, 2 threads
have to be reserved.

Basically to allow for an overall better CPU utilization of the entire workflow, CPU utilization of HaplotypeCaller has
to be shifted to full integer values. To do so, the effects of different settings for the --native-pair-hmm-threads
option (1, 2, 4, 6, 8 and 12 threads) were analyzed.

3.12. Benchmarking & Optimizations 65

OVarFlow, Release 2.0

The impact of the number of native pairHMM threads is seen in the total runtimes and also CPU utilization. Total
runtimes are declining from 1 to 4 threads, without a noticeable further improvement with higher thread counts. CPU
utilization, apart from the always given initial peak load, is continuously rising, as can also be seen from the average
CPU utilization:

native pairHMM threads average CPU usage (%)
1 106
2 124
4 140
6 152
8 164
12 188

A higher CPU utilization, close to two threads, is achieved when using 12 native pairHMM threads. But as runtimes are
not improved over using 4 threads, there is no benefit in increasing the native pairHMM thread count. On the other side
when using only 1 native pairHMM thread, CPU usage is nearly reduced to a single thread. Considering the advantage
of being able to run twice the amount of HaplotypeCaller processes in parallel, the slightly increased runtime of the

66 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

individual process should be negligible.

To test the above hypothesis, the entire workflow was benchmarked again with optimized settings (see previous work-
flow benchmarking). In two identical data evaluations only the number of native pairHMM threads and the number of
Snakemake threads provided to the HaplotypeCaller were altered. Further settings were as follows:

• 6 intervals per sequencing data set with 6 data sets, resulting in a total of 36 intervals to call

• a maximum of 38 Snakemake threads (--cores 38)

• -XX:ParallelGCThreads=2 for SortSam, MarkDuplicates, HaplotypeCaller and ComineGVCFs

• -Xmx10G for SortSam

• -Xmx2G for MarkDuplicates, HaplotypeCaller and CombineGVCFs

The initial settings reserved 2 threads for every HaplotypeCaller. With a maximum of 38 parallel Snakemake jobs no
more than 19 parallel HaplotypeCaller were possible. With this setup again a plateau was reached at approx. 70 %
total CPU utilization.

3.12. Benchmarking & Optimizations 67

OVarFlow, Release 2.0

With the reduced CPU usage of a single native pairHMM thread and up to 38 parallel Snakemake jobs, all 36 intervals
could be evaluated in parallel by the HaplotypeCaller. As not all intervals are of the same length, short ones are finished
before larger ones. This results in a peak load above 90 % total CPU utilization and progressively declining CPU load
as more and more HaplotypeCallers are finishing on their respective interval.

When comparing both data evaluations and also previous benchmarkings of the entire workflow, a reduction in the total
runtime is observed. When reducing the CPU load of a single HaplotypeCaller but increasing the number of parallel
jobs, the entire workflow was finished in 38 h 11 min. On the other side the workflow without reducing performance
of the individual HaplotypeCaller was finished in 41 h 26 min. This clearly shows the overall runtime advantage of the
higher parallelization, despite the individual HaplotypeCaller being less performant.

The above procedure is especially interesting when hardware resources are limited and a maximum degree of system
utilization is desirable. On the other hand, if hardware resources are not a limiting factor, for instance with a large
cluster that would idle anyways, not limiting the individual HaplotypeCaller would result in a slightly reduced runtime.
In such circumstances the default of 4 native pairHMM threads is the optimum. For general usage OVarFlow includes
the default setting of four native pairHMM threads. Configuration is enabled through the config.yaml file.

3.13 Hardware recommendations

Resource requirements to perform variant calling with OVarFlow depend on the size of the respective project. Here
the main factors are the organisms genome size and of course the number of data sets or individuals within the study,
respectively. Non the less some general recommendations can be made. A first impression can also be obtained from
the benchmarking of the “entire workflow” (especially the last image of the section).

Concerning the hardware three key components have to be considered:

CPU Of course a high single thread performance is always helpful to accelerate calculations. But major parts of variant
calling can be parallelized, so that several data sets (and even intervals) can be processed in parallel. Therefore
a high number of CPU cores is considerably more helpful. Finally a shortage of processing power will result in
longer waiting times till results are calculated.

As a final note: the CPU must support the AVX (Advanced Vector Extensions) instruction set extension, as this
drastically increases calculations performed by HaplotypeCaller.

68 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

Main memory (RAM) OVarFlow has been designed and tested to be quite efficient when it comes to memory usage.
Still no final number of memory requirements can be given. In the end memory requirements depend on the
number of samples, number of HaplotypeCaller intervals and processing steps that are run in parallel. A lack
of memory cannot be compensated (swapping is not advisable here) and will result in invocation of the out of
memory killer (OOM killer), thereby terminating running processes. The solution to such a situation would be
to run less parallel Snakemake jobs or to provide more main memory.

Data storage Variant calling depends on large amounts of sequencing data, that are processed in multiple steps. This
produces large amounts of intermediate data. Several terabytes of data can be produced easily. For instance 526
Gb of compressed sequencing data (32 fastq.gz files) resulted in 2.8 Tb of output data, when processed with
OVarFlow. Besides storage space, file system latency and throughput are of concern. Slow storage, be it local
disk storage or network storage, can slow down the whole analysis as well.

No single hardware component acts in isolation. Therefore the system has to be considered as a whole unit and single
bottlenecks have to be identified. Adding more CPU cores won’t help if memory is already scarce.

Also high performance computing (HPC) is best suited for variant calling, smaller projects could also be realised with
smaller hardware budgets. Here a very rough estimation shall be given, based upon hardware availability in 2020. The
given estimations come without any warranty and are based upon personal experience and estimates:

Desktop Computers Most desktop computers are not suitable for variant calling, as they do not offer the required num-
ber of CPU cores. For smaller projects, meaning less then 10 individuals or smaller genomes (e.g. Drosophila
melanogaster with approx. 144 Mb genome size) a desktop CPU like AMD Ryzen (TM) 9 5950X or 9 3950X
(16 cores / 32 threads) or comparable combined with at least 64 Gb main memory (better 128 Gb) might be
suitable.

High End Desktop In the last couple of years High End Desktop (HEDT) computers approached the performance
previously reserved to server computers. Especially with AMD’s line of Threadripper (TM) processors up to 64
cores and 128 threads are available within a single CPU (as of the begining of 2021). When combined with 256
Gb of main memory medium sized projects with some dozens of individuals might be possible. Storage space
will probably be a problem though.

Servers and Clusters For large scale projects with hundreds of samples a dedicated infrastructure is definitely re-
quired. The usage of a compute cluster, for instance based upon Son of Grid Engine, is the way to go.

3.14 The basic variant calling workflow

This section lists the most basic commands that are needed to perform variant calling. Therefore it is targeted at those
people that are:

• not interested in the usage of OVarFlow as a full-fledged workflow for variant calling, but are interested in the
commands involved,

• want to get a basic understanding of what’s going on under the hood of this workflow but get confused by the
syntax of Snakemake and the Snakefile used,

• novice users of GATK as GATK best practises can be confusing in the beginning.

This section lists the major shell commands in their most basic form, that are needed to perform variant calling with
GATK. Essentially this will give you a very general overview of variant calling using GATK 4. It is highly recommended
to also have at least a look at the section covering “GATK particularities”. This section tries to cover some of GATK’s
very subtle usage issues which can have considerable effects on runtime and resource usage. Those issues won’t be
covered here.

To make use of the description provided here, a basic understanding of the Unix shell bash (or similar) is required.

3.14. The basic variant calling workflow 69

https://arc.liv.ac.uk/trac/SGE

OVarFlow, Release 2.0

3.14.1 Overview of the workflow

In the sections below details of the exact variant calling workflow are outlined. This section is supposed to give a
schematic and rather rough summary of the process. One might distinguish three phases:

• Data pre-processing

0. fastqc: quality control of reads (optional but recommended)

1. bwa mem: mapping to the reference genome

2. gatk SortSam: sorting of the reads

3. gatk MarkDuplicates: as the name implies

• Preparation of variants

4. gatk HaplotypeCaller: actual variant calling

5. gatk GatherVcfs: pooling of intervals (optional)

6. gatk CombineGVCFs: pooling of called individuals

7. gatk GenotypeGVCFs: genotyping of the called variants

8. gatk SelectVariants: separating of SNPs and indels

9. gatk VariantFiltration: hard filtering of SNPs and indels

10. gatk SortVcf: merging of SNPs and indels

11. gatk SelectVariants: removal of filtered variants

• Variant annotation

12. snpEff: variant annotation

3.14.2 Preparing the workflow

For the variant calling workflow outlined below, several files and databases have to be prepared in the first place. This is
mostly related to the preprocessing of reference genomes and annotations. It is advisable to perform those steps before
the actual data evaluation, as the workflow might fail if one database cannot be created. This is especially annoying if
it happens in the last step, where a database for the usage of snpEff (which is used for the functional annotation of
detected variants) is required.

Compression of the reference

To save some disc space reference genomes should usually be compressed. This is often accomplished via gzip. The
drawback of this program is, that compression cannot be indexed easily. Therefore the reference genome should be
compressed with bgzip, which is very similar to gzip.

1 gunzip --to-stdout <ref_genome.gz> | bgzip > <ref_genome_recompressed.gz>

70 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

Indexing the reference genome

1 samtools faidx <ref_genome_recompressed.gz>

Creating a bwa index

1 bwa index <ref_genome_recompressed.gz>

A dictonary for GATK

1 gatk CreateSequenceDictionary -R <ref_genome_recompressed.gz>

A database for snpEff

From personal experience it is advisable to use an annotation from the RefSeq in gff format. Processing of those files
with snpEff has been unproblematic so far. Gtf formatted files as available from Ensembl might not be parsable by
snpEff. When in doubt try creating the snpEff database first.

For snpEff to read the annotation, it shouldn’t be compressed and be named genes.gff. Furthermore the reference
should be copied to the same directory and named sequences.fa.gz. Compression of the reference sequence is fine. The
directory to which the files are copied should be named after the reference genome you’re using (_name_), but without
any file specific extension.

1 gunzip --to-stdout <ref_anno.gz> > <snpEffDB/_name_/genes.gff>
2 cp <ref_sequence.gz> <snpEffDB/_name_/sequence.fa.gz>

snpEff can create global databases, which will reside in your home directory by default. It is advisable to create an
annotation database in your local project directory.

1 snpEff -Xmx12g build -dataDir ${PWD}/snpEffDB \
2 -configOption <_name_>.genome=<_name_> \
3 -gff3 -v <_name_>

Usage of snpEff can be daunting in the beginning. Fortunately the online documentation is quite comprehensive.

3.14.3 The actual variant calling

For this example procedure it is assumed, that for each individual to be analyzed, all reads are contained in only one
fastq file containing the forward reads (R1) and one file containing the reverse reads (R2). If there are several files for
forward and reverse reads, those have to be merged in advance.

3.14. The basic variant calling workflow 71

https://www.ncbi.nlm.nih.gov/refseq/
https://www.ensembl.org
http://snpeff.sourceforge.net/SnpEff.html

OVarFlow, Release 2.0

Quality control via FastQC

1 fastqc -o <output dir> -f fastq <input file.fastq.gz>

Mapping of fastq files

When using GATK bwa mem is probably the most widely used mapper. Of course an index database has to be created in
the first place (idxbase). Directly piping into samtools will produce compressed bam files. Writing stderr to separate
files will preserve any potential error or log messages.

1 bwa mem -M -t <number_of_threads> -R <read_group_tag> <idxbase> \
2 <forward_reads.fastq> <reverse_reads.fastq> 2> <bwa_log_message> | \
3 samtools view -v /dev/fd/0 -o <output_mapping.bam> 2> <samtools_log_message>

Sorting of mapped bam files

Here as well as in subsequent steps the “output mapping” of the last command will act as input of this step.

1 gatk SortSam -I <input_mapping.bam> -SO coordinate -O <output_mapping.bam>

Marking of duplicated reads

1 gatk MarkDuplicates -I <input_mapping.bam> -O <output_mapping.bam> \
2 -M <metrics.txt>

Creating an index of marked mappings

1 samtools index <output_mapping.bam>

Variant calling with HaplotypeCaller

Optionally OVarFlow is capable of calling variants on several intervals per individual. By executing the Haplotype-
Caller on intervals a high degree of parallelization is achieved and analysis times are reduced considerably.

When applying a *.gz suffix to the output genomics variant call format file (GVCF; ending: g.vcf) the resulting file will
automatically be compressed.

1 gatk HaplotypeCaller -ERC GVCF -I <input_mapping.bam> -R <reference_genome> \
2 -O <interval_xy.g.vcf.gz>

72 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

Gathering of intervals per individual

If variant calling was performed in parallel on intervals, the resulting intervals have to be combined.

1 gatk GatherVcfs -O <individual_xy.g.vcf.gz> -I <interval_1.g.vcf.gz> \
2 -I <interval_2.g.vcf.gz> ... -I <interval_n.g.vcf.gz>

This step could also be performed by CombineGVCFs, but GatherVcfs is considerably quicker. A downside of
GatherVcfs is, that it can only handle intervals that preserve the initial order of contigs. This issue is automatically
taken care of in the workflow.

Combining the individual variant files

For every processed individual a single file is created. Those files have to be combined.

1 gatk CombineGVCFs -O <combinde_variants.g.vcf.gz> -R <reference_genome> \
2 -V <individual_1.g.vcf.g> -V <individual_2.g.vcf.gz> ... -V <individual_n.g.vcf.gz>

Processing the Genotype

Even though the HaplotypeCaller writes genotype information into the initial GVCF file, this information is lost when
merging the individual GVCF files. By performing joint genotyping over several individuals the genotyping accuracy
is improved and the genotype information is restored.

1 gatk GenotypeGVCFs -R <reference_genome> -V <input.g.vcf.gz> -O <output.vcf.gz>

Quality filtering of variants

HaplotypeCaller will also create some false positive variant calls. GATK offers two approaches to reduce the amount
of false positives.

• Variant quality score recalibration (VQSR): This approach needs a so-called “truth set” of already known variants
for the respective organism. This truth set is used in a machine learning approach, to learn the profile of likely real
variants. This method is most feasible with well studied organisms, exhibiting highly reliable variant datasets.

• Hard filtering: In hard filtering solid thresholds are applied onto the quality parameters of each called variant.
Variants not meeting those quality thresholds will be discarded.

A third approach shall also be mentioned. In a kind of an iterative process first hard filtering is used to create an
initial data set of variants. This initial variant set is then used in a second step to perform VQSR. This approach has
the potential drawback of introducing a bias within the hard filtering which is then learned and applied in the VQSR.
Therefore a single hard filtering step was used in this workflow.

3.14. The basic variant calling workflow 73

https://gatk.broadinstitute.org/hc/en-us/articles/360035531112--How-to-Filter-variants-either-with-VQSR-or-by-hard-filtering

OVarFlow, Release 2.0

Separating SNPs and indels

Different thresholds have to be applied for SNPs and indels. They have to be separated in the first step.

1 gatk SelectVariants -V <input.vcf.gz> -select-type SNP -O <output_snps.vcf.gz>

1 gatk SelectVariants -V <input.vcf.gz> -select-type INDEL -select-type MIXED \
2 -O <output_indels.vcf.gz>

It is imported to combine the options -select-type INDEL and -select-type MIXED as otherwise positions show-
ing both types of variants will be lost.

Hard filtering

In hard filtering various filters are applied. It is important not to chain the single filters via the logical or operator (||)
(see GATK). In this case the entire filter would pass as soon as a single filter condition is not fulfilled.

1 gatk VariantFiltration -V <input_snps.vcf.gz> \
2 -filter 'QD <2.0' --filter-name 'QD2' \
3 -filter 'QUAL < 30.0' --filter-name 'QUAL30' \
4 -filter 'SOR > 3.0' --filter-name 'SOR3' \
5 -filter 'FS > 60.0' --filter-name 'FS60' \
6 -filter 'MQ < 40.0' --filter-name 'MQ40' \
7 -filter 'MQRankSum < -12.5' --filter-name 'MQRankSum-12.5' \
8 -filter 'ReadPosRankSum < -8.0' --filter-name 'ReadPosRankSum-8' \
9 -O <output_snps.vcf.gz>

1 gatk VariantFiltration -V <input_indels.vcf.gz> \
2 -filter 'QD < 2.0' --filter-name 'QD2' \
3 -filter 'QUAL < 30.0' --filter-name 'QUAL30' \
4 -filter 'FS > 200.0' --filter-name 'FS200' \
5 -filter 'ReadPosRankSum < -20.0' --filter-name 'ReadPosRankSum-20' \
6 -O <output_indels.vcf.gz>

Merging SNPs and indels

After the filtering step SNPs and indels can be reunified.

1 gatk SortVcf -I <input_snps.vcf.gz> -I <input_indels.vcf.gz> -O <sorted_variants.vcf.gz>

Remove filtered variants

Hard filtering will only tag variants not meeting the filtering criteria. Still they have to be removed from the dataset.
This step basically creates your finished data set containing the called variants.

1 gatk SelectVariants -V <sorted_variants.vcf.gz> -O <filtered_variants.vcf.gz> \
2 --exclude-filtered true

74 Chapter 3. Motivation behind OVarFlow

https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035531112--How-to-Filter-variants-either-with-VQSR-or-by-hard-filtering#2

OVarFlow, Release 2.0

Annotating the variants

A further tool might be used to create a functional annotation of your variants. Based upon a valid genome annotation,
functional annotation of the variants will determine if the respective variant is for instance within a coding region of a
gene. Also the effect of a variant will be computed, telling if a synonymous, non synonymous or nonsense mutation is
given through the respective variant. The program snpEff is one option between many.

1 snpEff -Xmx12g <_name_> <filtered_variants.vcf.gz> \
2 -dataDir <path/to/snpEffDB> \
3 -configOption <_name_>.genome=<_name_> \
4 -stats <snpEff_summary.html> | \
5 bgzip > <annotated_variants.vcf.gz>

The option -Xmx12g will increase the memory available to the Java virtual machine. This might be needed for larger
genomes. Otherwise it’s optional and can be changed or bypassed.

3.14.4 DAG of the workflow

Snakemake creates a directed acyclic graph (DAG) of the workflow, within the so-called DAG phase. This DAG can
be visualized using the dot command. To give an example of the workflow, two input datasets (each with forward and
reverse reads) were analyzed using three HaplotypeCaller intervals. The resulting DAG of this workflow is shown in
the following figure. Each rounded box represents the execution of a single Snakemake rule (knot of the graph) the
arrows show the succession of the rules (edges of the graph).

3.15 The extended BQSR workflow

The previous section listed the most basic form of variant calling, that will deliver first results. Those results can already
be sufficient. On the other hand, the GATK team recommends to also perform base quality score recalibration (BQSR).
Therefore a second workflow was created, that can optionally be performed in succession to the first workflow. This
workflow will use the results generated in the first, basic workflow to perform BQSR and thereby hopefully deliver
further improved variant calls.

Just as before in the basic workflow, this section lists the major shell commands in their basic form to perform BQSR
and improved variant calling. The actual commands implemented in the workflow will include additional options to
obtain improved performance of the respective GATK application. Those optimizations are not covered here.

The BQSR workflow further processes some files generated in the basic variant calling workflow. The generation of
those files has to be looked up in the previous workflow.

3.15.1 Overview of the workflow

This section gives a brief overview of the exact GATK tools that are used and the succession of their usage. Beginning
from step 16, the workflow is basically a repetition of the variant calling as performed in the basic workflow.

• Base quality optimization

13. gatk BaseRecalibrator: generation of recalibration table for BQSR

14. gatk ApplyBQSR: actual base quality score recalibration of reads

15. gatk BaseRecalibrator: recalibration table after BQSR

gatk AnalyzeCovariates: comparison of recalibrated bases

3.15. The extended BQSR workflow 75

https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

OVarFlow, Release 2.0

• Variant calling

16. gatk HaplotypeCaller: actual variant calling

17. gatk GatherVcfs: pooling of intervals (optional)

18. gatk CombineGVCFs: pooling of called individuals

19. gatk GenotypeGVCFs: genotyping of called variants

20. gatk SelectVariants: separating of SNPs and indels

21. gatk VariantFiltration: hard filtering of SNPs and indels

22. gatk SortVcf: merging of SNPs and indels

23. gatk SelectVariants: removal of filtered variants

• Variant annotation

24. snpEff: variant annotation

3.15.2 Base quality optimization

As the name implies base quality score recalibration (BQSR) is a processing step of the reads to optimize the given
quality scores. During sequencing the base callers can introduce systematic errors, when judging the base quality
(phred score). This step is supposed to improve those quality scores and therefore differentiation between real variants
and just wrongly called bases. Further details are listed by the GATK team.

Initial analysis of base quality scores

1 gatk BaseRecalibrator -R <reference_genome> -I <mapping_of_marked_duplicates.bam> \
2 --known-sites <called_variants.vcf.gz> -O <first_recalibration.table>

Change the given quality scores

1 gatk ApplyBQSR -R <reference_genome> -I <mapping_of_marked_duplicates.bam> \
2 -bqsr <first_recalibration.table> -O <optimized_read_mapping.bam>

Analysis of recalibration effects

Second analysis of base quality scores, to judge the effect of the quality score recalibration.

1 gatk BaseRecalibrator -R <reference_genome> -I <optimized_read_mapping.bam> \
2 --known-sites <called_variants.vcf.gz> -O <second_recalibration.table>

After the analysis of the improved mappings, the results before and after quality score optimization can be compared.

1 gatk AnalyzeCovariates -before <first_recalibration.table> \
2 -after <second_recalibration.table> -plots <analysis_results.pdf>

76 Chapter 3. Motivation behind OVarFlow

https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

OVarFlow, Release 2.0

3.15.3 Improved variant calling

The following steps 16 till 24 are basically identical to the variant calling steps as performed in the basic workflow,
beginning with the HaplotypeCaller and following steps. After variant calling, annotation of the called variants is
performed via SnpEff. A detailed description of the actual commands can be found in the basic workflow description.

3.15.4 DAG of the BQSR workflow

Again, the succession of rules (a directed acyclic graph - DAG) that are applied by Snakemake to evaluate the input
data can be visualized. In the given example graph two data sets are evaluated. For each of the data sets variant calling
through HaplotypeCaller is performed on three different intervals. Therefore in the given example, six HaplotypeCaller
processes might be executed in parallel, given that sufficient hardware resources are available.

It has to be noted, that the shown graph cannot stand by itself. Previous data evaluation through the basic workflow has
to be performed, as the generated results are further processed in the BQSR workflow.

3.16 OVarFlow 2

When processing large cohorts of individuals (more than 50 to 100 individuals), OVarFlow 1 offered some additional
leeway for performance improvements. These issues were addressed in OVarFlow 2. Previously, only the Haplotype-
Caller was parallelized based on genomic intervals that could be processed simultaneously. By rearranging two steps
of the workflow, the GATK tools CombineGVCFs and GenotypeGVCFs are able to process the same genomic intervals
that the HaplotypeCaller was utilizing. This allows these two steps, which can take quite a long time for large cohorts,
to be dramatically accelerated through parallelization.

However, the first version of OVarFlow remains a valid tool for analyzing small to medium sized cohorts. OVarFlow 2
will be especially beneficial when analyzing very large cohorts, comprising hundreds of individuals. For instance, when
using whole genome sequencing data for genome-wide association studies (GWAS), OVarFlow 2 provides significant
improvements which can be in the order of several weeks when dealing with very large cohort sizes.

3.16.1 Usage of OVarFlow 2

Fortunately, OVarFlow 2 could be designed in a way that the usage remains identical to the first generation of the
workflow. This also includes the CSV and Yaml configuration files. Therefore, all previous usage descriptions remain
valid.

Only one alteration on the end user side has to be considered: preexisting GVCF files (*.g.vcf.gz) cannot be included
in the analysis. To remain fully compatible with OVarFlow 1, the corresponding entry was not remove from the CSV
configuration file. If any GVCF files are specified here, OVarFlow 2 will war the user, that these files won’t be used in
the analysis. Instead, the fastq files should be provided for all individuals to be analyzed.

The only real difference when executing OVarFlow 2 is that a different Snakefile has to be specified on the command
line, namely Snakefile_OVarFlow2. Nevertheless, a brief recap of the most important commands shall be given
here:

• Perform a dry run of the workflow:

snakemake -np --cores <threads> --snakefile Snakefile_OVarFlow2

• Perform the actual run:

3.16. OVarFlow 2 77

OVarFlow, Release 2.0

snakemake -p --cores <threads> --snakefile Snakefile_OVarFlow2

3.16.2 Overview of the workflow

Here, a brief overview of the tools used in the workflow and the sequence of their use is given. The tools used are iden-
tical to the first version of OVarFlow, but due to some rearrangements a higher degree of parallelization was achieved.

• Data pre-processing

0. fastqc: quality control of reads (optional but recommended)

1. bwa mem: mapping to the reference genome

2. gatk SortSam: sorting of the reads

3. gatk MarkDuplicates: as the name implies

• Preparation of variants

4. gatk HaplotypeCaller: actual variant calling (on intervals)

5. gatk CombineGVCFs: pooling of called individuals (on intervals)

6. gatk GenotypeGVCFs: genotyping of the called variants (on intervals)

7. gatk GatherVcfs: pooling of intervals

8. gatk SelectVariants: separating of SNPs and indels

9. gatk VariantFiltration: hard filtering of SNPs and indels

10. gatk SortVcf: merging of SNPs and indels

11. gatk SelectVariants: removal of filtered variants

• Variant annotation

12. snpEff: variant annotation

Compared to OVarFlow 1, only the steps 5, 6 and 7 are rearranged and use some slightly modified commands (apart
from some changes to the Snakefile that were necessary to make things work). Here, the most basic syntax of these
three commands shall be provided, but no special Java options or tuning parameters will be given.

Pooling of intervals per individual

1 gatk CombineGVCFs -O <interval_n.g.vcf.gz> -L <interval_n.list> -R <reference_genome> \
2 -V <individual_1/interval_n.g.vcf.gz> -V <individual_2/interval_n.vcf.gz> \
3 ... -V <individual_n/interval_n.g.vcf.gz>

78 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

Processing the Genotypes

1 gatk GenotypeGVCFs -L <interval_n.list> -R <reference_genome> \
2 -V <interval_n.g.vcf.gz> -O <interval_n.g.vcf.gz>

Gathering of the intervals

1 gatk GatherVcfs -o <all_genotyped_calls.g.vcf.gz> -I <interval_1.g.vcf.gz> -\
2 -I <interval_2.vcf.gz> ... -I <interval_n.g.vcf.gz

3.16.3 Comparison of OVarFlow 1 & 2

The flow chat below illustrates the differences in the workflow between version one and two. The most obvious is that
GATK CombinegVCFs and GenotypeGVCFs will also work in parallel. This was achieved by postponing Pooling of
the Intervals.

3.16. OVarFlow 2 79

OVarFlow, Release 2.0

80 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.16.4 Comparative Benchmarking

As explained before, OVarFlow 2 advances parallelizition by performing more computations on genomic intervals. To
see the impact of parallelizing GATK CombineGVCFs and GenotypeGVCFs, the entire workflows of OVarFlow 1 and
2 were benchmarked. Benchmarking was performed as previously described in section “Resource Optimization ->
Benchmarking & Optimizations -> Entire Workflow”. In addition, the same sequencing data and hardware resources
were used as before.

Reference organism Gallus gallus
Reference genome GCF_000002315.6 (GRCg6a)
Sequencing data ERR1303580, ERR1303581, ERR1303584, ERR1303585, ERR1303586, RR1303587

Both workflows utilized the same yaml configuration file:

1 heapSize:
2 SortSam : 10
3 MarkDuplicates : 2
4 HaplotypeCaller : 2
5 GatherIntervals : 2
6 GATKdefault : 12
7

8 ParallelGCThreads:
9 SortSam : 2

10 MarkDuplicates : 2
11 HaplotypeCaller : 2
12 GatherVcfs : 2
13 CombineGVCFs : 2
14 GATKdefault : 4
15

16 Miscellaneous:
17 BwaThreads : 6
18 BwaGbMemory : 4
19 GatkHCintervals : 4
20 HCnpHMMthreads : 4
21 GATKtmpDir : "./GATK_tmp_dir/"
22 MaxFileHandles : 300
23 MemoryOverhead : 1
24

25 Debugging:
26 CSV : False
27 YAML : False

The actual computations were performed on a single cluster node (SGE) reserved exclusively for OVarFlow. The cluster
node provided 20 cores / 40 threads (Intel Xeon E5-2670) and 251.9 Gb of main memory.

3.16. OVarFlow 2 81

https://www.ebi.ac.uk/ena/data/view/ERR1303580
https://www.ebi.ac.uk/ena/data/view/ERR1303581
https://www.ebi.ac.uk/ena/data/view/ERR1303584
https://www.ebi.ac.uk/ena/data/view/ERR1303585
https://www.ebi.ac.uk/ena/data/view/ERR1303586
https://www.ebi.ac.uk/ena/data/view/ERR1303587

OVarFlow, Release 2.0

The total runtime of both workflows was:

• OVarFlow 1: 42.675 h

• OVarFlow 2: 34.91 h

Thereby, the total runtime of OVarFlow 2 could be reduced by about 22 % compared to OVarFlow 1. Of course, this
value is very specific for the given hardware, sequencing data, reference genome, and settings mentioned above. By
utilizing even more intervals in parallel, further runtime reduction might be possible. However, a time saving of 20 %
by utilizing OVarFlow 2 is a reasonable estimate.

82 Chapter 3. Motivation behind OVarFlow

OVarFlow, Release 2.0

3.17 GATK Pitfalls

Variant calling is no trivial task, involving many different applications. Not only is the usage and interaction of those
applications often far from obvious, but also especially some GATK tools possess some very intricate pitfalls. Dealing
with those for the first time can be very time consuming. During the development of OVarFlow many of those pitfalls
were unraveled and are now taken care of by the workflow. Still the most annoying and time consuming issues shall be
explained here.

gatk SortSam --TMP_DIR SortSam creates a lot of temporary files of the form /tmp/<user_name>/
`sortingcollection.nnnnnnnnnnnnnnnnnnn.tmp (with n being any number). Depending on the
size of the input data this can easily add up to dozens of gigabytes, thereby quickly consuming space under
/tmp. Depending on the partition scheme further problems can result from this. Also in case of abortion of
SortSam, those temporary files are not automatically deleted. In those cases manual deletion or user lockout
might be required.

To circumvent this problem OVarFlow stores temporary files under /path/to/project_dir/GATK_TMP_DIR/
. This is archived by SortSam’s --TMP_DIR <directory> option. As the project directory has to provide
reasonable amounts of storage, large temporary files shouldn’t cause any problems here.

gatk MarkDuplicates --TMP_DIR Just like SortSam MarkDuplicates creates a lot of temporary files. MarkDuplicates
will create a directory of its own, like /tmp/<user_name>/CSPI.nnnnnnnnnnnnnnnnnnn.tmp/ (with n being
any number). Inside this directories a lot of different files are created.

Again the option --TMP_DIR <directory> was utilized, to redirect the creation of temporary files to /path/
to/project_dir/GATK_TMP_DIR/.

gatk MarkDuplicates -ASO | --ASSUME_SORT_ORDER MarkDuplicates offers an option to specify the given sort
order of the input data, including unsorted. Surprisingly there is an error message when using this option:

picard.PicardException: This program requires input that are either coordinate or query sorted
(according to the header, or at least ASSUME_SORT_ORDER and the content.) Found AS-
SUME_SORT_ORDER=unsorted and header sortorder=unsorted

Therefore the previous step of using GATK SortSam is obligatory. As a side note, even though no in-depth
investigation was performed, sorting with samtools also was causing issues. So sticking to SortSam is recom-
mended.

gatk MarkDuplicates -MAX_FILE_HANDLES A final issue with MarkDuplicates is that it opens a plethora of file han-
dles. Depending on the setup of the respective operating system, this can cause very subtle difficulties. The
maximum number of allowed open file descriptors may be too small for MarkDuplicates. The current limits
may be displayed via ulimit -Hn (hard limit) and ulimit -Sn (soft limit). Often 4096 is a given limit. In
OVarFlow the option -MAX_FILE_HANDLES was set to 300.

gatk HaplotypeCaller and AVX instruction GATK was heavily optimized to make use of the given instruction set
of the respective CPU. Therefore run times can be heavily influenced by the presence of CPU instructions (e.g.
SSE, SSE2, AVX, AVX512). This was also mentioned in the Video of the GATK4: Live Launch Invent (approx.
at 23 min). Some performance optimizations were also achieved by a cooperation with Intel engineers:

This resulted in performance optimizations with improvements for PairHMM, used in Haplotype
caller, for Intel® Xeon® processors with Intel® Advanced Vector Extensions 512 (Intel® AVX 512)
and Intel FPGAs.

From personal experience (no systematic assessment), the absence of AVX will cause approx. five times longer
runtimes of HaplotypeCaller. As this is a matter of days or even weeks, OVarFlow will refuse to run on a CPU
without AVX.

gatk HaplotypeCaller parallelization In previous versions of GATK HaplotypeCaller an option for parallelization
was available (-nct and -nt). This is no longer the case with GATK 4. To achieve multithreading with GATK

3.17. GATK Pitfalls 83

https://www.broadinstitute.org/news/broad-institute-releases-open-source-gatk4-software-genome-analysis-optimized-speed-and
https://itpeernetwork.intel.com/genome-analysis-toolkit-launch/

OVarFlow, Release 2.0

4, the GATK team recommends the use of (Apache) Spark. Unfortunately at the time of writing (June 2020,
GATK 4.1.7) the Spark version of HaplotypeCaller is still BETA, with the official waring:

Use the non-spark HaplotypeCaller if you care about the results.

To circumvent this problem, OVarFlow a so called scatter gather approach is used by OVarFlow. This allows for
the automatic parallel evaluation of a user defined number of intervals per analyzed individual.

Java / GATK -XX:ParallelGCThreads=<2-4> The Java virtual machine (JVM) will automatically set the number
of garbage collection (GC) threads, depending on the number of available CPU cores or threads, respectively.
The performance of some GATK tools is heavily impacted by the number of GC threads. Performance is clearly
declining at higher thread counts. The best performance is seen at 2-4 Java GC threads. A detailed analysis can
be found within the Java GC benchmarking section of this documentation.

gatk GatherVcfs and suffix of input data The HaplotypeCaller generates a Genomic VCF file, abbreviated as GVCF.
Sometimes the file suffix .gvcf is used for such files (or .gvcf.gz for the compressed data). GatherVcfs will
not accept a GVCF file if the suffix is .gvcf, it explicitly has to be .g.vcf (or .g.vcf.gz). The same file with
the wrong ending will produce a quite uninformative Java stack trace:

java.io.UncheckedIOException: java.nio.charset.MalformedInputException: Input␣
→˓length = 1

at java.io.BufferedReader$1.hasNext(BufferedReader.java:574)
at java.util.Iterator.forEachRemaining(Iterator.java:115)
...

Also the order of the contigs in the individual GVCF files has to be identical to the order of the contigs as defined
in the VCF header section. Fortunately the error message is more informative here:

ERROR 2020-11-09 14:03:20 GatherVcfs There was a problem with gathering␣
→˓the INPUT.java.lang.IllegalArgument
Exception: First record in file /path/to/file/interval_2.g.vcf.gz is not after␣
→˓first record in previous file /path/to/file/interval_1.g.vcf.gz

To avoid the above problems CombineGVCFs can be used instead of GatherVCFs, but the merging of interval
files will take considerably longer and costs more resources.

Java / GATK -Xmx<value>g Just as default Java GC thread numbers depend on the amount of given cores, the de-
fault heap allocation by the JVM depends upon the amount of given system memory. The default values of a
specific machine can be determined via java -XshowSettings:vm. This is of importance as memory usage
of some GATK tools is dependent upon the Max. Heap Size value. Higher values will result in higher memory
consumption, thereby potentially limiting the amount of parallel processes. In the worst case the system might
even run out of memory, ultimately leading to termination of processes.

GATK --tmp-dir Many GATK applications will create files like this /tmp/
tmp_read_resource_nnnnnnnnnnnnnnnnnnn.config, where n denotes any number. Those files won’t be
deleted upon program termination. It appears like tools derived from Picard applications won’t create such
files but “native” GATK applications like HaplotypeCaller, CombineGVCFs, SelectVariants and so forth. The
creation of such files can also be redirected to a different directory, but the syntax of this option for “native”
GATK tools is a little different --tmp-dir <directory>, with lower case letters as opposed to --TMP_DIR
for Picard tools.

fastqc -Xmx1g Although not part of GATK, the tool fastqc has pitfalls of its own. Interestingly for small fastq files
(approx. 50 MB gzip fastq test file) the memory allocation pool has to be set explicitly. Otherwise the Java VM
aborts with the following error:

...$ fastqc -o testFASTQC -f fastq FASTQ_INPUT_DIR/GGA081_R1.fastq.gz
Started analysis of GGA081_R1.fastq.gz

(continues on next page)

84 Chapter 3. Motivation behind OVarFlow

https://gatk.broadinstitute.org/hc/en-us/articles/360035890591-Spark
https://gatk.broadinstitute.org/hc/en-us/articles/360042912971-HaplotypeCallerSpark-BETA-
https://gatkforums.broadinstitute.org/gatk/discussion/comment/42844/#Comment_42844

OVarFlow, Release 2.0

(continued from previous page)

Approx 5% complete for GGA081_R1.fastq.gz
Approx 10% complete for GGA081_R1.fastq.gz
Approx 15% complete for GGA081_R1.fastq.gz
Approx 20% complete for GGA081_R1.fastq.gz
Exception in thread "Thread-1" java.lang.OutOfMemoryError: Java heap space

at uk.ac.babraham.FastQC.Utilities.QualityCount.<init>(QualityCount.java:33)
at uk.ac.babraham.FastQC.Modules.PerTileQualityScores.

→˓processSequence(PerTileQualityScores.java:281)
at uk.ac.babraham.FastQC.Analysis.AnalysisRunner.run(AnalysisRunner.java:88)
at java.lang.Thread.run(Thread.java:745)

Therefore before invoking fastqc it is advisable to set an environment variable for the Java VM like this: export
_JAVA_OPTIONS='-Xmx1g -XX:ParallelGCThreads=4. It is also advisable to reduce the number of Java GC
threads.

snpEff OVarFlow performs functional annotation of the identified variants using snpEff. To perform variant anno-
tation this tool makes use of a database of the annotated genome. Even though this is not a bug but a feature,
one should be aware of the fact, that snpEff normally stores this database some within the users home directory.
As those databases can consume considerable amounts of space within the users home. Therefore OVarFlow
changes this default behavior and stores the snpEff database within the project directory. Keeping all project
specific data together in one place is advisable anyways.

3.18 Citation

If you’re using OVarFlow or if the documentation provided here was helpful in your own work, please consider citing
OVarFlow. The final peer-reviewed publication is:

Bathke, J., Lühken, G. OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow. BMC
Bioinformatics 22, 402 (2021). https://doi.org/10.1186/s12859-021-04317-y.

A preprint was made available at the BioRxiv:

Jochen Bathke, Gesine Lühken. OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow.
2021. https://doi.org/10.1101/2021.05.12.443585.

3.19 License

• The source code of OVarFlow itself is licensed under the terms of the GPLv3.

• The accompanying documentation of OVarFlow (the document you’re reading right now) is licensed under the
terms of the Creative Commons license CC-BY SA 3.0, either in your national translation or if not applicable in
the global version.

3.18. Citation 85

https://doi.org/10.1186/s12859-021-04317-y
https://www.biorxiv.org
https://doi.org/10.1101/2021.05.12.443585
https://www.gnu.org/licenses/gpl-3.0.en.html
https://creativecommons.org/
https://creativecommons.org/licenses/by-sa/3.0/de/
https://creativecommons.org/licenses/by-sa/3.0/

OVarFlow, Release 2.0

3.20 Contact

OVarFlow has been developed at the Professorship of Pet and Pathogenetics at the Justus-Liebig-University Giessen.
In case of comments or questions about OVarFlow, contact the institute. Due to high amounts of spam e-mail addresses
cannot be posted publicly.

3.21 Repository

The source code of OVarFlow and its accompanying documentation can be found at:

• GitLab

Prebuild containers with all nessessary software components can be found at:

• Docker hub (Docker images)

• Zenodo.org, doi: 10.5281/zenodo.4746639 (Singularity containers)

3.22 Change Log

3.22.1 2.0

Substantial performance improvements were achieved by applying parallelization strategies to additional steps of the
workflow.

• A new Snakefile for OVarFlow 2.0 was created, rearranging the workflow (CombineGVCFs and GenotypeGVCFs
were both parallelized).

• Preexisting GVCF files won’t be used by OVarFlow 2.0.

• Comprehensive documentation of OVarFlow 2.0 was created.

• Flowchart comparing OVarFlow 1 and OVarFlow 2 was added to the documentation.

• Benchmarking to compare the performance of OVarFlow 1 and 2.

3.22.2 1.2.0

• Improved scheduling of bwa memory usage (especially useful for Slurm).

• Documentation for bwa memory scheduling added.

• Improved documentation for memory scheduling via config.yaml.

• Two new alternative target rules added to the workflow.

• Documentation provided for these new target rules.

• Minor corrections to the documentation, such as typos and wording.

86 Chapter 3. Motivation behind OVarFlow

https://www.uni-giessen.de/fbz/fb09/institute/ith/ag-luehken
https://gitlab.com/computational-biology/ovarflow
https://hub.docker.com/r/ovarflow/release/tags
https://zenodo.org/record/4746639

OVarFlow, Release 2.0

3.22.3 1.1.0

• Improved scheduling of memory usage (especially useful for Slurm usage).

• Documentation for Slurm usage added.

• Java memory overhead enabled for better resource scheduling (affects Snakefile, config.yaml and documenta-
tion).

• Some refactoring of the Snakefile (mainly formatting).

• Change log added to documentation.

• Citation of final publication added.

3.22.4 1.0.1

Various improvements were added to the documentation. No changes to the workflow.

• New section about error identification added.

• Better explanation of snakemake options -j and –cores.

• bioRxiv link added.

• Small fixes, like typos.

3.22.5 1.0

• Initial release of OVarFlow, including the “normal” variant calling workflow and the optional BQSR workflow.

3.22. Change Log 87

	Target audience
	Premises to use OVarFlow
	Motivation behind OVarFlow
	Capabilities of OVarFlow
	Some highlights of OVarFlow
	The two phases of OVarFlow
	The primary goal of OVarFlow

	Quick reference for OVarFlow
	Adding the BQSR workflow
	Warning

	A Primer into the technologies
	Python 3
	Snakemake
	Conda & Bioconda
	GATK & GATK Best Practices
	Docker & Singularity

	Setup & preparations
	Setting up a Conda environment
	Setting up Docker or Singularity
	Docker
	Singularity

	Conda & Snakemake usage
	What is needed
	Creating a Conda environment
	Preparing OVarFlow
	The CSV configuration file
	What are read groups?

	The YAML configuration file
	Starting the workflow
	Alternative targets
	noSnpEff
	variantsPerSample
	dedubBAM

	Configuration & adaptation
	The CSV file
	The yaml file
	Memory recommendations

	Advanced usage topics
	Cluster usage - SGE
	On a single large cluster node
	On an entire cluster

	Cluster usage - Slurm
	On a single large cluster node
	On an entire cluster

	Trouble shooting
	Error identification
	Reproducibility

	Docker & Singularity usage
	Docker
	Resource utilization
	Obtaining the yml file
	Final note on Docker

	Singularity
	Manual start of OVarFlow
	Obtaining the yml file

	The BQSR workflow
	Setup & preparations
	Workflow usage
	Optimized workflow execution

	Workflow configuration
	Container usage
	Automatic start of the workflow
	Manual start of the workflows

	Example & Tutorial
	The test data set
	OVarFlow execution
	Step 1: Obtaining OVarFlow
	Step 2: Creating a project directory
	Step 3: Adapt the CSV configuration file
	Step 4: Activate the OVarFlow Environment
	Step 5: Start the OVarFlow workflow
	Step 6: Lean back

	Resource usage

	Resource requirements
	Benchmarking & Optimizations
	Java Garbage Collection
	Effect on GATK SortSam
	Effect on GATK MarkDuplicates
	Effect on GATK HaplotypeCaller
	Effect on GATK GatherVcfs
	Deprecated: Effect on GATK CombineGVCFs
	OVarFlow and Java GC

	Java Heap Space (-Xmx)
	Effect on GATK SortSam
	Effect on GATK MarkDuplicates
	Effect on GATK HaplotypeCaller
	Effect on GATK GatherVcfs
	Deprecated: Effect on GATK CombineGVCFs
	OVarFlow and Java heap size

	File size / sequencing depth
	bwa mem | samtools
	GATK SortSam
	GATK MarkDuplicates
	GATK HaplotypeCaller
	GATK CombineGVCFs
	Conclusions

	Entire Workflow
	Workflow without optimization
	Workflow with Java GC optimization
	Workflow with Java heap optimization
	Workflow with Java -Xmx10G
	Workflow with optimized heap sizes

	Maximizing CPU utilization

	Hardware recommendations
	The basic variant calling workflow
	Overview of the workflow
	Preparing the workflow
	Compression of the reference
	Indexing the reference genome
	Creating a bwa index
	A dictonary for GATK
	A database for snpEff

	The actual variant calling
	Quality control via FastQC
	Mapping of fastq files
	Sorting of mapped bam files
	Marking of duplicated reads
	Creating an index of marked mappings
	Variant calling with HaplotypeCaller
	Gathering of intervals per individual
	Combining the individual variant files
	Processing the Genotype
	Quality filtering of variants
	Separating SNPs and indels
	Hard filtering
	Merging SNPs and indels
	Remove filtered variants

	Annotating the variants

	DAG of the workflow

	The extended BQSR workflow
	Overview of the workflow
	Base quality optimization
	Initial analysis of base quality scores
	Change the given quality scores
	Analysis of recalibration effects

	Improved variant calling
	DAG of the BQSR workflow

	OVarFlow 2
	Usage of OVarFlow 2
	Overview of the workflow
	Pooling of intervals per individual
	Processing the Genotypes
	Gathering of the intervals

	Comparison of OVarFlow 1 & 2
	Comparative Benchmarking

	GATK Pitfalls
	Citation
	License
	Contact
	Repository
	Change Log
	2.0
	1.2.0
	1.1.0
	1.0.1
	1.0

